CMSC 216 Quiz 3 Worksheet

The next quiz for the course will be on Wed, Feb 24. The following list provides additional information about the quiz:

- The quiz will be a written quiz (no computer).
- The quiz will be in lab session.
- Closed book, closed notes quiz.
- Answers must be neat and legible.
- Quiz instructions can be found at http://www.cs.umd.edu/~nelson/classes/utilities/examRules.html
- Make sure you know your section number and your TA's name.
- You must take your quiz in your assigned lab/discussion section and not show up to a random discussion section. We will not grade quizzes taken in the incorrect section.
- Regarding Piazza - Feel free to post questions in Piazza regarding the worksheet and possible solutions to problems, but for coding questions please do not post code. You can post suggestions on how to solve coding problems, but your classmates will benefit more if they themselves actually solve the problems. Pretend you are a TA while addressing or providing help in Piazza 😊

At the end we have provided an example of a memory map so you know exactly what we are expecting while drawing maps. Take a look at the example before drawing any maps.

IMPORTANT: Notice how we represent an array in the map (we just add the name next to the first element followed by the elements). In class (for Nelson’s sections) we were using a cell pointing to the first element to show what the compiler does when passing the array to a function, but when drawing the memory map we do not want to define such a cell. You will not be penalized in Quiz #2 if you draw such a cell.

Exercises

1. When should a function be defined as static?

2. Which of the following pointer variables uses the largest number of bytes?
   ```c
   int *p;
   int **q;
   ```

3. What will happen when the following code is executed? Explain briefly.
   ```c
   int *p = NULL;
   *p = 20;
   ```

4. What will happen when the following code is executed? Explain briefly.
   ```c
   int *p;
   *p = 20;
   ```

5. What will happen when the following code is executed? Notice that a has not been initialized Explain briefly.
   ```c
   int a;
   int *a_ptr = &a;
   printf("%p\n", (void *)a_ptr);
   ```

6. What is the difference between a void pointer variable and a non-void pointer variable (e.g., an integer pointer variable)?
7. Write a memory map for the program below. In cases where you are asked to print an address, write **NULL** or **MEMORY_ADDRESS** (for any other value). To help you understand pointers better, you may assume some memory addresses while drawing the memory map (as we did in lecture).

```c
#include <stdio.h>

void process(float *passed_card);
void analyze(float **evaluated_card);

void process(float *passed_card) {
    *passed_card += 200;
    printf("In process_one %.2f\n", *passed_card);
    passed_card = NULL;
}

void analyze(float **evaluated_card) {
    if (**evaluated_card >= 600) {
        *evaluated_card = NULL;
    } else {
        evaluated_card = NULL;
    }
}

int main() {
    float bank_account = 500.00;
    float *card_one, *card_two, *card_three = &bank_account;

    card_one = card_two = &bank_account;
    printf("V1: %.2f\n", bank_account);
    printf("V2: %.2f\n", *card_one);
    printf("V3: %.2f\n", *card_two);
    printf("V4: %p\n", (void *)card_two);
    printf("V5: %p\n", (void *)&bank_account);

    *card_two += 20.0;
    printf("V6: %.2f\n", *card_two);
    card_two = NULL;
    printf("V7: %.2f\n", *card_one);
    process(card_one);
    printf("V8: %p\n", (void *)card_one);
    printf("V9: %.2f\n", bank_account);

    analyze(&card_three);
    printf("V10: %p\n", (void *)card_three);
    printf("V11: %.2f\n", *card_one);

    return 0;
}
```
8. Implement the function `maximum` that has the prototype below. The function computes the maximum in the array and returns that value via the `max` parameter. If the array has a size of 0, the pointer variable associated with the argument must be set to `NULL`. The following code fragment illustrates how the function will be used.

```c
int b[] = {30, 5, 80, 4};
int max;
int * max_ptr = &max;

maximum(b, 4, &max_ptr);
if (max_ptr == NULL) {
    printf("Array size is 0\n");
} else {
    printf("%d\n", max);
}
```

You can assume the array passed to the function will have positive elements (if the array size is different from 0).

```c
static void maximum(const int a[], int a_size, int **max)
```

9. Write the output generated by the program below. In cases where you are asked to print an address, write `NULL` or `MEMORY_ADDRESS` (for any other value).

```c
#include <stdio.h>

#define SIZE 5

void task(int *a, int **b) {
    printf("R5: %d\n", a[2]);
    a = NULL;
    *b = NULL;
}

int main() {
    int data[SIZE] = {3, 9, 7, 11};
    int *p = data;
    printf("R1: %d\n", *p);
    printf("R2: %d\n", *data);
    p[1] += 100;
    printf("R3: %d - %d\n", data[0], data[1]);
    printf("R4: %d\n", data[4]);
    task(data, &p);
    printf("R6: %p\n", (void *) data);
    printf("R7: %p\n", (void *) p);
    return 0;
}
```
Sample Memory Map

We are providing this example so you know what we are expecting for memory maps.

Example

Draw a memory map for the following program up to the point indicated by the comment /*HERE */.

```c
#include <stdio.h>
#define MAX_LEN 5

void process(int *b, int *s, int **w) {
    b[0] = 82;
    s[1] = 95;
    s = NULL;
    *w = NULL;
    /* HERE */
}

int main() {
    int a[MAX_LEN] = {10, 7, 30, 40};
    int *p = a;
    int *m = a + 2;
    process(p, m, &p);
    return 0;
}
```

Answer:

```
  p
     NULL

  w

  s
     NULL

  m

  a
   82 7 30 95 0

  b
```

Note: You can also replace NULL with the ground symbol as done in lecture. For example, s above could be represented as:

```
s
```