Order Statistics (aka Selection Problems)

Linear-Time
Median Finding
Select(list, pos)

Previously we attempted to...

Place the n elements of the list into groups of 3 and find the median of those groups and create Med3List.

$\text{MoM3} = \text{Select}(\text{Med3List, } n/6);$

Partition the original list around MoM3 into LeftList and RightList and figure out the position of MoM3.

if $\text{pos} = = \text{MoM3pos}$ then
 DONE!
elseif $\text{pos} < \text{MoM3pos}$ then
 Select(LeftList, pos);
else
 Select(RightList, pos-MoM3pos)

…but this ran worst-case $O(n \log n)$ time.
Were we close?

We’ve seen via recurrence trees that eliminating some items as we go down level-by-level has some nice asymptotic advantages.

What if we could eliminate some more values before our recursion…
Select(list, pos)

Let’s try something a little different…

Place the n elements of the list into groups of 5 and find the median of those groups and create Med5List.

MoM5 = Select(Med5List, $n/10$);

Partition the original list around MoM5 into LeftList and RightList and figure out the position of MoM5.

if pos == MoM5pos then
 DONE!
elseif pos < MoM5pos then
 Select(LeftList, pos);
else
 Select(RightList, pos - MoM5pos)

…how will this run in the worst-case?
How bad is that last call?

After partitioning around the MoM5, in the worst case possible, how many elements are there in the sub-list that we are going to call Select() on recursively?
What’s The Worst Runtime?

Find the Med5s: \(\Theta(n) \)
Find the MoM5: \(T(n/5) \)
Partition around MoM5: \(\Theta(n) \)
Worst Case Recursion: \(T(7n/10) \)
It’s linear!

Next, let’s try to narrow-in on the constant coefficient…