Order Statistics
(aka Selection Problems)

Linear-Time
Median Finding

Select(list, pos)

Previously we attempted to…
Place the \(n\) elements of the list into groups
of 3 and find the median of those groups
and create Med3List.
\[
\text{MoM3} = \text{Select(Med3List, } \frac{n}{6})\;
\]
Partition the original list around MoM3
into LeftList and RightList and figure out
the position of MoM3.
\[
\text{if pos==MoM3pos then}
 \text{DONE!}
\text{elseif pos<MoM3pos then}
 \text{Select(LeftList, pos)}
\text{else}
 \text{Select(RightList, pos-MoM3pos)}
\]
…but this ran worst-case \(O(n \text{log} n)\) time.
Were we close?

We’ve seen via recurrence trees that eliminating some items as we go down level-by-level has some nice asymptotic advantages.

What if we could eliminate some more values before our recursion…

Select(list, pos)

Let’s try something a little different…

Place the n elements of the list into groups of 5 and find the median of those groups and create Med5List.

$\text{MoM5} = \text{Select(Med5List, } \frac{n}{10} \text{)}$;

Partition the original list around MoM5 into LeftList and RightList and figure out the position of MoM5.

if pos==MoM5pos then
 DONE!
elseif pos<MoM5pos then
 Select(LeftList, pos);
else
 Select(RightList, pos-MoM5pos)

…how will this run in the worst-case?
How bad is that last call?

After partitioning around the MoM5, in the worst case possible, how many elements are there in the sublist that we are going to call Select() on recursively?

What’s The Worst Runtime?

Find the Med5s: $\Theta(n)$
Find the MoM5: $T(n/5)$
Partition around MoM5: $\Theta(n)$
Worst Case Recursion: $T(7n/10)$
It’s linear!

Next, let’s try to narrow-in on the constant coefficient…