Randomized Algorithms

What does it mean for a value to be randomly selected?

How can we make use of randomness?

Monte Carlo Algorithms
- Don’t always give the correct answer.
- The runtime can be described consistently.

Las Vegas Algorithms
- They always give the correct answers.
- Their runtime is not consistent.
Random Median Finding #1

Algorithm
– Select a value at random, call it p.
– Partition the list around p.
– See if it was the median (same number in each side of the partitioning).
– If it is, great. If it wasn’t, oh well, try again…

Question #1: Does this work?
Question #2: Is it a good algorithm?

Random Median Finding #2

Algorithm
– Select a value at random, call it p.
– Partition around p.
– See if it was the median (same number in each side of the partitioning).
– If it wasn’t, then we have still found the x^{th} smallest value in the list (the value of x will be based on the size of the partitions).
 • If x is “before” the median, take the right side and find the $(n/2-x)^{\text{th}}$ smallest.
 • Otherwise, take the “left” side and find the $(n/2)^{\text{th}}$ smallest.

Note: If this ends up being a good idea, we’d end up coding general selection.

Question #1: Does this work?
Question #2: Is it a good algorithm?
Compute the Runtime

How do we analyze the runtime of something like this?

Partitioning takes $n-1$ comparisons (and also the generation of a random number).

The recursion may or may not be needed, and we don’t know exactly how many values will be passed into that recursion.

$$T(n) = (n-1) + T(???)$$

The best case is easy, we find it on the first shot and it’s $n-1$ comparisons.

What about worst case and average case?

Worst? Average?

In the worst-case scenario, we let the randomly selected value be the min or max.

$$T(n) = (n-1) + T(n-1)$$

To work out the average runtime we can think about expected values; do a weighted average of all possible splits around a selected pivot…
Expected Running Time

We will assume unique values in the list.
We’ll round things and say the partitioning takes n comparisons.
We will look at “worst” expected runtime.
We’ll compute assuming we have to look in the larger of the two sub-lists (which is true for median finding).
We won’t worry about floor/ceiling issues in this initial exploration.

$$T(n) \leq n + \frac{\sum_{x=1}^{n} T(\max(x-1, n-x))}{n}$$