QuickSort

Recap of Algorithm
Recap of Best/Worst Case
Average Case
Addressing the worst case…
QuickSort Recap

This is another example of a pure “divide and conquer” algorithm.

Step 1 (divide)
Select a “pivot” value and logically partition the list into two sub-lists:
- L1: values less than the pivot
- L2: values greater than the pivot
Your list is now: \[L1, \text{pivot}, L2\]

Step 2 (conquer)
Sort L1 and L2

SORTED!
QuickSort Pseudocode

Algorithm
Let’s assume that our list L is held in an array and that we want to use as little extra space as possible.

QuickSort(array L, int first, int last) {
 if (first<last) {
 pivotpos = Partition(L,first, last)
 QuickSort(L, first, pivotpos-1)
 QuickSort(L,pivotpos+1,last);
 }
}

NOTE: We would still need to write the **Partition** algorithm. The easiest thing to code would probably be to pick the last value in the list as the pivot and then partition based on that.
Trace some examples if needed/useful…

5, 7, 6, 1, 3, 2, 4

1, 2, 3, 4, 5
Partition’s runtime…

There are many ways to implement the partition algorithm, but in terms of the number of data comparisons, it should be accomplished using \(n-1 \).
QuickSort’s runtime…

Start with $T(0) = T(1) = 0$

For the recurrence relation we want to consider three cases:

– With the worst case split.

 $T(n) = (n-1) + T(0) + T(n-1)$

– With the best case split.

 $T(n) = (n-1) + T(n/2-1) + T(n/2)$

– With the average/expected split….
Average Case Analysis

We return to the idea of expected values…

Let’s assume that every “division situation” around the pivot is equally likely.

If we let i represent the position where L2 starts, then we could represent the expected runtime as being:

$$T(n) = (n - 1) + \sum_{i=1}^{n} [T(i - 1) + T(n - i)]$$

$$T(n) = (n - 1) + \frac{\sum_{i=1}^{n} [T(i - 1) + T(n - i)]}{n}$$
What about that worst case?

Recall that regardless of the “average” case, that if we expect mostly-sorted inputs, then the runtime will be bad.

How could we alter our approach to try to address (ie: decrease the likelihood of) the issue of sorted lists leading to n^2 runtime with the pivot/partitioning algorithm that I originally presented?