We proved that when we are using a comparison-based model, the best we could do was $\Omega(n \log n)$ runtime in the worst case of an algorithm.

What if we change models?

- Might we have new restrictions (recall that our sorts so far work on any types of comparable data).
- Could we have certain types of data where the runtime is vastly improved?
Memory “Sort” on Unique Integers

Create arr[MAXINT] = {0}
For each value in the input,
 arr[value]=1;
Traverse arr from 1 to MAXINT and rebuild sorted list of values!

of comparisons to data?
amount of work done?

Counting Sort

Done on integers.
Values do not need to be unique.

max=Max(arr);
min=Min(arr);
range=max-min+2;
count=new array[range];
temp=new array[n];
for i=1 to range
 count[i]=0;
for i=1 to n
 count[arr[i]-min+1]++;
for i=2 to range
 count[i]+=count[i-1];
for i=n to 1
 temp[count[arr[i]-min+1]] = arr[i];
 count[arr[i]-min+1]--;
for i=1 to n
 arr[i]=temp[i];
Radix Sort

The ordering of the data must be such that if we perform a stable sort based on the individual positions of the data going “right to left” we will end up with the data correctly sorted.

ie: sort padded integers by column:

738
059
132
007
561

Question (1)

If we have n b-bit integers, can we sort them in $\Theta(b \cdot n)$ time?
Question (2)
How many bits are used to represent the numbers in the range 0…n-1?

Question (3)
What if we group the bits into clusters of size r?
Question (4)

Can we sort n values that are in the range $0..n^2$ in $O(n)$ time?

“When/How” Radix Sort

We have seen that certain approaches are really order $n \log n$ while others are really linear.

How do we know the “right” radix to use (what should we cluster together as a column)?

In a generic sense, we can show that the best radix sort for n values over a range of s is order $n \log s / \log n$.

So, in the case of n values over a range of n^2 the radix sort would at best give us a runtime of n^2.
Bucket Sort

The sort runs in linear expected time.

We assume input that is uniformly distributed across the range of values.

Consider integers between 1 and 1000.
Create n “buckets” of equal range size
(eg: 1…$\frac{1000}{n}$, $\frac{1000}{n}+1…2\times\frac{1000}{n}$, …)
If each bucket is ordered, then we can obtain an ordered full list by traversing the buckets in order.