Support Vector Machines (II)

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu

Slides credit: Piyush Rai
What we know about SVM so far

REVIEW
The Maximum Margin Principle

- Find the hyperplane with maximum separation margin on the training data
Support Vector Machine (SVM)

A hyperplane based linear classifier defined by \mathbf{w} and b

Prediction rule: $y = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$

Given: Training data $\{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_N, y_N)\}$

Goal: Learn \mathbf{w} and b that achieve the maximum margin
Let’s assume the entire training data is correctly classified by \((\mathbf{w}, b)\) that achieve the maximum margin.

- Assume the hyperplane is such that:
 1. \(\mathbf{w}^T \mathbf{x}_n + b \geq 1\) for \(y_n = +1\)
 2. \(\mathbf{w}^T \mathbf{x}_n + b \leq -1\) for \(y_n = -1\)
 3. Equivalently, \(y_n (\mathbf{w}^T \mathbf{x}_n + b) \geq 1\)
 \(\Rightarrow\) \(\min_{1 \leq n \leq N} |\mathbf{w}^T \mathbf{x}_n + b| = 1\)
- The hyperplane’s margin:
 \(\gamma = \min_{1 \leq n \leq N} \frac{|\mathbf{w}^T \mathbf{x}_n + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||}\)
Solving the SVM Optimization Problem (assuming linearly separable data)

Our optimization problem is:

Minimize \(f(w, b) = \frac{||w||^2}{2} \)

subject to \(1 \leq y_n(w^T x_n + b), \quad n = 1, \ldots, N \)

Introducing Lagrange Multipliers \(\alpha_n \ (n = \{1, \ldots, N\}) \), one for each constraint, leads to the Lagrangian:

Minimize \(L(w, b, \alpha) = \frac{||w||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b)\} \)

subject to \(\alpha_n \geq 0; \quad n = 1, \ldots, N \)
Solving the SVM Optimization Problem
(assuming linearly separable data)

Take (partial) derivatives of L_P w.r.t. \mathbf{w}, b and set them to zero

$$
= \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0
$$

Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize $L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^T \mathbf{x}_n)$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0, \quad \alpha_n \geq 0; \quad n = 1, \ldots, N$
SVM: the solution!
(assuming linearly separable data)

Once we have the α_n's, \mathbf{w} and b can be computed as:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

$$b = -\frac{1}{2} \left(\min_{n:y_n=+1} \mathbf{w}^T \mathbf{x}_n + \max_{n:y_n=-1} \mathbf{w}^T \mathbf{x}_n \right)$$

Note: Most α_n's in the solution are zero (sparse solution)

- Reason: Karush-Kuhn-Tucker (KKT) conditions
- For the optimal α_n's
 $$\alpha_n \{1 - y_n (\mathbf{w}^T \mathbf{x}_n + b)\} = 0$$
- α_n is non-zero only if \mathbf{x}_n lies on one of the two margin boundaries, i.e., for which $y_n (\mathbf{w}^T \mathbf{x}_n + b) = 1$
- These examples are called support vectors
- Support vectors “support” the margin boundaries
What if the data is not separable?

GENERAL CASE SVM SOLUTION
SVM in the non-separable case

- no hyperplane can separate the classes perfectly

- We still want to find the max margin hyperplane, but
 - We will allow some training examples to be misclassified
 - We will allow some training examples to fall within the margin region
SVM in the non-separable case

Recall: For the separable case (training loss = 0), the constraints were:

\[y_n(w^T x_n + b) \geq 1 \quad \forall n \]

For the non-separable case, we relax the above constraints as:

\[y_n(w^T x_n + b) \geq 1 - \xi_n \quad \forall n \]

\(\xi_n \) is called slack variable (distance \(x_n \) goes past the margin boundary)

\(\xi_n \geq 0, \forall n, \) misclassification when \(\xi_n > 1 \)
SVM Optimization Problem

Non-separable case: We will allow misclassified training examples
 - but we want their number to be minimized
 ⇒ by minimizing the sum of slack variables \((\sum_{n=1}^{N} \xi_n)\)

The optimization problem for the non-separable case

\[
\text{Minimize} \quad f(w, b) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n \\
\text{subject to} \quad y_n(w^T x_n + b) \geq 1 - \xi_n, \quad \xi_n \geq 0 \quad n = 1, \ldots, N
\]

C dictates which term dominates the minimization
- Small C => prefer large margins and allows more misclassified examples
- Large C => prefer small number of misclassified examples, but at the expense of a small margin
Introducing Lagrange Multipliers...

Our optimization problem is:

\[
\text{Minimize } f(w, b, \xi) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n \\
\text{subject to } 1 \leq y_n(w^T x_n + b) + \xi_n, \quad 0 \leq \xi_n \quad n = 1, \ldots, N
\]

Introducing Lagrange Multipliers \(\alpha_n, \beta_n\) \((n = \{1, \ldots, N\})\), for the constraints, leads to the Primal Lagrangian:

\[
\text{Minimize } L_p(w, b, \xi, \alpha, \beta) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n\{1 - y_n(w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n \\
\text{subject to } \alpha_n, \beta_n \geq 0; \quad n = 1, \ldots, N
\]

Terms in red are those that were not there in the separable case!
Formulating the dual objective

Take (partial) derivatives of L_P w.r.t. \mathbf{w}, b, ξ_n and set them to zero

\[\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0, \quad \frac{\partial L_P}{\partial \xi_n} = 0 \Rightarrow C - \alpha_n - \beta_n = 0 \]

Using $C - \alpha_n - \beta_n = 0$ and $\beta_n \geq 0 \Rightarrow \alpha_n \leq C$

Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize

\[L_D(\mathbf{w}, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^T \mathbf{x}_n) \]

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $0 \leq \alpha_n \leq C$; $n = 1, \ldots, N$

Note
• Given α the solution for \mathbf{w}, b has the same form as in the separable case
• α is again sparse, nonzero α_n’s correspond to support vectors
Support Vectors in the Non-Separable Case

We now have 3 types of support vectors!

1. Lying on the margin boundaries $\mathbf{w}^T \mathbf{x} + b = -1$ and $\mathbf{w}^T \mathbf{x} + b = +1$ ($\xi_n = 0$)
2. Lying within the margin region ($0 < \xi_n < 1$) but still on the correct side
3. Lying on the wrong side of the hyperplane ($\xi_n \geq 1$)
Notes on training

• Solving the quadratic problem is $O(N^3)$
 – Can be prohibitive for large datasets

• But many options to speed up training
 – Approximate solvers
 – Learn from what we know about training linear models
Recall: Learning a Linear Classifier as an Optimization Problem

Objective function

Loss function measures how well classifier fits training data

Regularizer prefers solutions that generalize well

$$\min_{w,b} L(w, b) = \min_{w,b} \sum_{n=1}^{N} \mathbb{I}(y_n(w^T x_n + b) < 0) + \lambda R(w, b)$$
Recall: Learning a Linear Classifier as an Optimization Problem

\[
\min_{w,b} L(w, b) = \min_{w,b} \sum_{n=1}^{N} \mathbb{I}(y_n(w^T x_n + b) < 0) + \lambda R(w, b)
\]

• **Problem:** The 0-1 loss above is NP-hard to optimize exactly/approximately in general

• **Solution:** Different loss function approximations and regularizers lead to specific algorithms (e.g., perceptron, support vector machines, etc.)
Recall: Approximating the 0-1 loss with surrogate loss functions

- Examples (with $b = 0$)
 - Hinge loss $[1 - y_n w^T x_n]_+ = \max\{0, 1 - y_n w^T x_n\}$
 - Log loss $\log[1 + \exp(-y_n w^T x_n)]$
 - Exponential loss $\exp(-y_n w^T x_n)$

- All are convex upper-bounds on the 0-1 loss
What is the SVM loss function?

No penalty \((\xi_n = 0)\) if \(y_n(w^T x_n + b) \geq 1\)

Linear penalty \((\xi_n = 1 - y_n(w^T x_n + b))\) if \(y_n(w^T x_n + b) < 1\)

It’s precisely the hinge loss \(\max\{0, 1 - y_n(w^T x_n + b)\}\)
Recall: What is the perceptron optimizing?

Algorithm 5 \texttt{PerceptronTrain}(D, MaxIter)

1. \(w_d \leftarrow 0, \text{ for all } d = 1 \ldots D \) \quad // initialize weights
2. \(b \leftarrow 0 \) \quad // initialize bias
3. \textbf{for} \(\text{iter} = 1 \ldots \text{MaxIter} \) \textbf{do}
4. \quad \textbf{for} \all (x,y) \in D \textbf{do}
5. \quad \quad \(a \leftarrow \sum_{d=1}^{D} w_d x_d + b \) \quad // compute activation for this example
6. \quad \quad \textbf{if} \(ya \leq 0 \) \textbf{then}
7. \quad \quad \quad \(w_d \leftarrow w_d + y x_d, \text{ for all } d = 1 \ldots D \) \quad // update weights
8. \quad \quad \quad \(b \leftarrow b + y \) \quad // update bias
9. \quad \quad \textbf{end if}
10. \quad \textbf{end for}
11. \textbf{end for}
12. \textbf{return} \(w_0, w_1, \ldots, w_D, b \)

- Loss function is a variant of the hinge loss
 \[
 \max\{0, -y_n(w^T x_n + b)\}
 \]
SVM + KERNELS
Kernelized SVM training

Recall the SVM dual Lagrangian:

\[
\text{Maximize } \quad L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m^T x_n) \\
\text{subject to } \quad \sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N
\]

Replacing \(x_m^T x_n \) by \(\phi(x_m)^T \phi(x_n) = k(x_m, x_n) = K_{mn} \), where \(k(., .) \) is some suitable kernel function

\[
\text{Maximize } \quad L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n K_{mn} \\
\text{subject to } \quad \sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N
\]

SVM now learns a linear separator in the kernel defined feature space \(\mathcal{F} \)
Kernelized SVM prediction

Prediction for a test example \(\mathbf{x} \) (assume \(b = 0 \))

\[
y = \text{sign}(\mathbf{w}^\top \mathbf{x}) = \text{sign}(\sum_{n \in SV} \alpha_n y_n \mathbf{x}_n^\top \mathbf{x})
\]

\(SV \) is the set of support vectors (i.e., examples for which \(\alpha_n > 0 \))

Replacing each example with its feature mapped representation \((\mathbf{x} \rightarrow \phi(\mathbf{x})) \)

\[
y = \text{sign}(\sum_{n \in SV} \alpha_n y_n \phi(\mathbf{x}_n)^\top \phi(\mathbf{x})) = \text{sign}(\sum_{n \in SV} \alpha_n y_n k(\mathbf{x}_n, \mathbf{x}))
\]

The weight vector for the kernelized case can be expressed as:

\[
\mathbf{w} = \sum_{n \in SV} \alpha_n y_n \phi(\mathbf{x}_n) = \sum_{n \in SV} \alpha_n y_n k(\mathbf{x}_n, .)
\]

Note
- Kernelized SVM needs the support vectors at test time!
- While unkernelized SVM can just store \(\mathbf{w} \)
Example: decision boundary of an SVM with an RBF Kernel
What you should know

• What are Support Vector Machines
• How to train SVMs
 – Which optimization problem we need to solve
• Geometric interpretation
 - What are support vectors and what is their relationship with parameters \(w, b \)?
• How do SVM relate to the general formulation of linear classifiers
• Why/how can SVMs be kernelized