Boosting
A Framework for Ensemble Learning

CMSC 422
MARINE CARPUAT
marine@cs.umd.edu
Recall: Machine Learning as Function Approximation

Problem setting
- Set of possible instances X
- Unknown target function $f: X \rightarrow Y$
- Set of function hypotheses $H = \{ h \mid h: X \rightarrow Y \}$

Input
- Training examples $\{(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output
- Hypothesis $h \in H$ that best approximates target function f
How can we turn a weak learner into a strong learner?

• Weak learner
 – consistently makes better predictions than random guessing (error < 50%)

• Strong learner
 – probably approximately correct (PAC)

Definitions 1. An algorithm A is an (ϵ, δ)-PAC learning algorithm if, for all distributions D: given samples from D, the probability that it returns a “bad function” is at most δ; where a “bad” function is one with test error rate more than ϵ on D.

(See CIML 10.3 for more learning theory)
Boosting

• Boosting = process of turning a weak algorithm into a strong (PAC) learner

• AdaBoost
 – first practical boosting algorithm
 – stands for “adaptive boosting”
 – adapts to the training data its given
AdaBoost Intuition

- Train a sequence of weak learners and combine their predictions

- Weak learner $t+1$ focuses on examples that were most challenging for weak learner t
 - Give more weight to examples with incorrect predictions at time t
 - Give less weights to examples that are correctly classified at time t
The AdaBoost Algorithm

Algorithm 31 AdaBoost(\(\mathcal{W}, \mathcal{D}, K\))

1. \(d^{(0)} \leftarrow \langle \frac{1}{N}, \frac{1}{N}, \ldots, \frac{1}{N} \rangle\) // Initialize uniform importance to each example
2. for \(k = 1 \ldots K\) do
3. \(f^{(k)} \leftarrow \mathcal{W}(\mathcal{D}, d^{(k-1)})\) // Train \(k\)th classifier on weighted data
4. \(\hat{y}_n \leftarrow f^{(k)}(x_n), \forall n\) // Make predictions on training data
5. \(\hat{e}^{(k)} \leftarrow \sum_n d_n^{(k-1)} [y_n \neq \hat{y}_n]\) // Compute weighted training error
6. \(\alpha^{(k)} \leftarrow \frac{1}{2} \log \left(\frac{1-\hat{e}^{(k)}}{\hat{e}^{(k)}} \right)\) // Compute “adaptive” parameter
7. \(d_n^{(k)} \leftarrow \frac{1}{Z} d_n^{(k-1)} \exp[-\alpha^{(k)} y_n \hat{y}_n], \forall n\) // Re-weight examples and normalize
8. end for
9. return \(f(\hat{x}) = \text{sgn} \left[\sum_k \alpha^{(k)} f^{(k)}(\hat{x}) \right]\) // Return (weighted) voted classifier
Algorithm 31 AdaBoost(\(\mathcal{W}, \mathcal{D}, K\))

1. \(d^{(0)} \leftarrow \left\langle \frac{1}{N}, \frac{1}{N}, \ldots, \frac{1}{N} \right\rangle\) // Initialize uniform weights

2. for \(k = 1 \ldots K\) do

3. \(f^{(k)} \leftarrow \mathcal{W}(\mathcal{D}, d^{(k-1)})\) // Train \(k\)

4. \(\hat{y}_n \leftarrow f^{(k)}(x_n), \forall n\) // Make prediction

5. \(\hat{e}^{(k)} \leftarrow \sum_n d_n^{(k-1)} [y_n \neq \hat{y}_n]\) // Compute error

6. \(\alpha^{(k)} \leftarrow \frac{1}{2} \log \left(\frac{1 - \hat{e}^{(k)}}{\hat{e}^{(k)}} \right)\) // Computed weight

7. \(d_n^{(k)} \leftarrow \frac{1}{Z} d_n^{(k-1)} \exp[-\alpha^{(k)} y_n \hat{y}_n], \forall n\) // Re-weight

8. end for

9. return \(f(\hat{x}) = \text{sgn} \left[\sum_k \alpha^{(k)} f^{(k)}(\hat{x}) \right]\) // Return final function
Example

• Let’s boost the majority class weak learner (on board)
Example:
boosting decision stumps
Example:
boosting decision stumps

D_1

h_1

$\epsilon_1 = 0.30$

$\alpha_1 = 0.42$
Example: boosting decision stumps

D_1

D_2

D_3

h_1

h_2

h_3

$\varepsilon_1 = 0.30$

$\alpha_1 = 0.42$

$\varepsilon_2 = 0.21$

$\alpha_2 = 0.65$

$\varepsilon_3 = 0.14$

$\alpha_3 = 0.92$
例题：
加强决策树

- 最终的决策边界看起来像什么？

- AdaBoost 带有决策树提供了一个学习线性分类器的算法！
AdaBoost

• Very general framework
 – it can use any weak learning algorithm (e.g., decision stumps, Naïve Bayes...)

• Very fast (single pass through data each time)

• Simple to implement

• No parameters to tune

• But sensitive to noise
Many other ensemble learning methods

- General idea: combine predictions of multiple classifiers into a stronger learner
- Boosting is one example
- Another example: Random Forests

Algorithm 32 \textsc{RandomForestTrain}(\(D,\ depth,\ K\))

1. \textbf{for} \(k = 1 \ldots K\) \textbf{do}
2. \hspace{1em} \(t^{(k)} \leftarrow\) complete binary tree of depth \textit{depth} with random feature splits
3. \hspace{1em} \(f^{(k)} \leftarrow\) the function computed by \(t^{(k)}\), with leaves filled in by \(D\)
4. \textbf{end for}
5. \textbf{return} \(f(\hat{x}) = \text{sgn} \left[\sum_k f^{(k)}(\hat{x}) \right] \) \hspace{1em} // Return voted classifier
What you should know

- What is ensemble learning
- What is the difference between a weak and a strong learner
- How to boost a weak learner with adaboost
- What is the connection between boosted decision stumps and linear classifiers