Lexing and Parsing
Overview

- Compilers are roughly divided into two parts
 - Front-end — deals with surface syntax of the language
 - Back-end — analysis and code generation of the output of the front-end

- Lexing and Parsing translate source code into form more amenable for analysis and code generation

- Front-end also may include certain kinds of semantic analysis, such as symbol table construction, type checking, type inference, etc.
Lexing vs. Parsing

- Language grammars usually split into two levels
 - Tokens — the “words” that make up “parts of speech”
 - Ex: Identifier \([a-zA-Z_]+\)
 - Ex: Number \([0-9]+\)
 - Programs, types, statements, expressions, declarations, definitions, etc — the “phrases” of the language
 - Ex: if (expr) expr;
 - Ex: def id(id, ..., id) expr end

- Tokens are identified by the lexer
 - Regular expressions

- Everything else is done by the parser
 - Uses grammar in which tokens are primitives
 - Implementations can look inside tokens where needed
Lexing vs. Parsing (cont’d)

- Lexing and parsing often produce abstract syntax tree as a result
 - For efficiency, some compilers go further, and directly generate intermediate representations

- Why separate lexing and parsing from the rest of the compiler?
- Why separate lexing and parsing from each other?
Parsing theory

• Goal of parsing: Discovering a parse tree (or derivation) from a sentence, or deciding there is no such parse tree

• There’s an alphabet soup of parsers
 ▪ Cocke-Younger-Kasami (CYK) algorithm; Earley’s Parser
 - Can parse any context-free grammar (but inefficient)
 ▪ LL(k)
 - top-down, parses input left-to-right (first L), produces a leftmost derivation (second L), k characters of lookahead
 ▪ LR(k)
 - bottom-up, parses input left-to-right (L), produces a rightmost derivation (R), k characters of lookahead

• We will study only some of this theory
 ▪ But we’ll start more concretely
Parsing practice

• Yacc and lex — most common ways to write parsers
 ▪ yacc = “yet another compiler compiler” (but it makes parsers)
 ▪ lex = lexical analyzer (makes lexers/tokenizers)

• These are available for most languages
 ▪ bison/flex — GNU versions for C/C++
 ▪ ocamlyacc/ocamllex — what we’ll use in this class
Example: Arithmetic expressions

- High-level grammar:
 - \(E \rightarrow E + E \mid n \mid (E) \)

- What should the tokens be?
 - Typically they are the terminals in the grammar
 - \{+, (,), n\}
 - Notice that \(n \) itself represents a set of values
 - Lexers use *regular expressions* to define tokens
 - But what will a typical input actually look like?
 - We probably want to allow for whitespace
 - Notice not included in high-level grammar: lexer can discard it
 - Also need to know when we reach the end of the file
 - The parser needs to know when to stop

```
1 + 2 + \n ( 3 + 4 2 )
```
Lexing with ocamllex (.mll)

```ocaml
(* Slightly simplified format *)
{ header }
rule entrypoint = parse
  regexp_1 { action_1 }
| ...
| regexp_n { action_n }
and ...
{ trailer }
```

- Compiled to .ml output file
 - **header** and **trailer** are inlined into output file as-is
 - **regexps** are combined to form one (big!) finite automaton that recognizes the union of the regular expressions
 - Finds *longest* possible match in the case of multiple matches
 - Generated regexp matching function is called **entrypoint**
Lexing with ocamllex (.mll)

```ocaml
(* Slightly simplified format *)
{ header }
rule entrypoint = parse
  regexp_1 { action_1 }
| ...
  | regexp_n { action_n }
and ...
{ trailer }
```

- When match occurs, generated `entrypoint` function returns value in corresponding action
 - If we are lexing for `ocamlyacc`, then we’ll return tokens that are defined in the `ocamlyacc` input grammar
Example

```ocaml
{ open Ex1_parser
 exception Eof
}

rule token = parse
    [' ' '	' '
']     { token lexbuf } (* skip blanks *)
| ['\n' ]           { EOL }
| ['0'-'9']+ as lxm  { INT(int_of_string lxm) }
| '+'               { PLUS }
| '('               { LPAREN }
| ')'               { RPAREN }
| eof               { raise Eof }

(* token definition from Ex1_parser *)
type token =
    | INT of (int)
    | EOL
    | PLUS
    | LPAREN
    | RPAREN
```
Generated code

• You don’t need to understand the generated code
 ▪ But you should understand it’s not magic
• Uses Lexing module from OCaml standard lib
• Notice that token rule was compiled to token fn
 ▪ Mysterious lexbuf from before is the argument to token
 ▪ Type can be examined in Lexing module ocamldoc
Lexer limitations

• Automata limited to 32767 states
 ▪ Can be a problem for languages with lots of keywords

```plaintext
rule token = parse
    "keyword_1"   { ... }
| "keyword_2"   { ... }
| ...
| "keyword_n"   { ... }
| ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id
   { IDENT id}
```

▪ Solution?
Now we can build a parser that works with lexemes (tokens) from `token.mll`

- Recall from 330 that parsers work by consuming one character at a time off input while building up parse tree
- Now the input stream will be tokens, rather than chars

  ```
  1 + 2 + \n ( 3 + 4 2 )
  ```

 Notice parser doesn’t need to worry about whitespace, deciding what’s an INT, etc
Suitability of Grammar

- Problem: our grammar is ambiguous
 - $E \rightarrow E + E \mid n \mid (E)$
 - Exercise: find an input that shows ambiguity

- There are parsing technologies that can work with ambiguous grammars
 - But they’ll provide multiple parses for ambiguous strings, which is probably not what we want

- Solution: remove ambiguity
 - One way to do this from 330:
 - $E \rightarrow T \mid E + T$
 - $T \rightarrow n \mid (E)$
Parsing with ocamlyacc (.mly)

- Compiled to .ml and .mli files
 - .mli file defines `token` type and entry point `main` for parsing
 - Notice first arg to `main` is a fn from a `lexbuf` to a `token`, i.e., the function generated from a .mll file!
Parsing with ocamlyacc (.mly)

.mly input

```
{%
  header
%}
declarations
%%
rules
%%
trailer
```

.ml output

```
(* header *)
type token = ...
...
let yytables = ...
(* trailer *)
```

- .ml file uses **Parsing** library to do most of the work
 - **header** and **trailer** copied direct to output
 - **declarations** lists tokens and some other stuff
 - **rules** are the productions of the grammar
 - Compiled to **yytables**; this is a table-driven parser Also include **actions** that are executed as parser executes
 - We’ll see an example next
Actions

• In practice, we don’t just want to check whether an input parses; we also want to do something with the result
 ▪ E.g., we might build an AST to be used later in the compiler

• Thus, each production in ocamlyacc is associated with an action that produces a result we want

• Each rule has the format
 ▪ lhs: rhs {act}
 ▪ When parser uses a production lhs → rhs in finding the parse tree, it runs the code in act
 ▪ The code in act can refer to results computed by actions of other non-terminals in rhs, or token values from terminals in rhs
Example

```plaintext
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%
main:
  | expr EOL { $1 } (* 1 *)
expr:
  | term { $1 } (* 2 *)
  | expr PLUS term { $1 + $3 } (* 3 *)
term:
  | INT { $1 } (* 4 *)
  | LPAREN expr RPAREN { $2 } (* 5 *)
```

- Several kinds of declarations:
 - %token — define a token or tokens used by lexer
 - %start — define start symbol of the grammar
 - %type — specify type of value returned by actions
Actions, in action

<table>
<thead>
<tr>
<th>INT(1)</th>
<th>PLUS</th>
<th>INT(2)</th>
<th>PLUS</th>
<th>LPAREN</th>
<th>INT(3)</th>
<th>PLUS</th>
<th>INT(42)</th>
<th>RPAREN</th>
<th>eof</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+2+(3+42)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>term[1].+2+(3+42)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expr[1].+2+(3+42)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expr[3].+(3+42)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expr[3]+(expr[45].)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expr[48].$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>main[48]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
main:  
  | expr EOL       { $1 }  
  expr:  
  | term          { $1 }  
  | expr PLUS term { $1 + $3 }  
  term:  
  | INT           { $1 }  
  | LPAREN expr RPAREN { $2 }  
```  

- The “.” indicates where we are in the parse
 - We’ve skipped several intermediate steps here, to focus only on actions
- (Details next)
Actions, in action

<table>
<thead>
<tr>
<th>INT(1)</th>
<th>PLUS</th>
<th>INT(2)</th>
<th>PLUS</th>
<th>LPAREN</th>
<th>INT(3)</th>
<th>PLUS</th>
<th>INT(42)</th>
<th>RPAREN</th>
<th>eof</th>
</tr>
</thead>
</table>

main:
- | expr EOL { $1 } |
expr:
 - | term { $1 } |
 - | expr PLUS term { $1 + $3 } |
term:
 - | INT { $1 } |
 - | LPAREN expr RPAREN { $2 } |

```
main:  
  | expr EOL     { $1 }  
expr:  
  | term        { $1 }  
  | expr PLUS term  { $1 + $3 }  
term:  
  | INT         { $1 }  
  | LPAREN expr RPAREN { $2 }  
```
Invoking lexer/parser

```ocaml
try
  let lexbuf = Lexing.from_channel stdin in
  while true do
    let result = Ex1_parser.main Ex1_lexer.token lexbuf in
    print_int result; print_newline(); flush stdout
  done
with Ex1_lexer.Eof ->
  exit 0
```

• Tip: can also use `Lexing.from_string` and `Lexing.from_function`
Terminology review

• Derivation
 ▪ A sequence of steps using the productions to go from the start symbol to a string

• Rightmost (leftmost) derivation
 ▪ A derivation in which the rightmost (leftmost) nonterminal is rewritten at each step

• Sentential form
 ▪ A sequence of terminals and nonterminals derived from the start-symbol of the grammar with 0 or more reductions
 ▪ I.e., some intermediate step on the way from the start symbol to a string in the language of the grammar

• Right- (left-)sentential form
 ▪ A sentential form from a rightmost (leftmost) derivation

• FIRST(α)
 ▪ Set of initial symbols of strings derived from α
Bottom-up parsing

- ocamlyacc builds a bottom-up parser
 - Builds derivation from input back to start symbol
 \[S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input} \]

- To reduce \(\gamma_i \) to \(\gamma_{i-1} \)
 - Find production \(A \rightarrow \beta \) where \(\beta \) is in \(\gamma_i \), and replace \(\beta \) with \(A \)

- In terms of parse tree, working from leaves to root
 - Nodes with no parent in a partial tree form its *upper fringe*
 - Since each replacement of \(\beta \) with \(A \) shrinks upper fringe, we call it a reduction.

- Note: need not actually build parse tree
 - \(|\text{parse tree nodes}| = |\text{input}| + |\text{reductions}|\)
Bottom-up parsing, illustrated

LR(1) parsing
- Scan input left-to-right
- Rightmost derivation
- 1 token lookahead

S \Rightarrow^* \alpha \ B \ y \Rightarrow \alpha \ \gamma \ y \Rightarrow^* \ x \ y

rule \ B \rightarrow \gamma

Upper fringe: solid
Yet to be parsed: dashed
LR(1) parsing
- Scan input left-to-right
- Rightmost derivation
- 1 token lookahead

\[S \Rightarrow^* \alpha \ B \ y \Rightarrow \alpha \ \gamma \ y \Rightarrow^* \ x \ y \]

Rule: \(B \rightarrow \gamma \)

Upper fringe: solid
Yet to be parsed: dashed
Finding reductions

• Consider the following grammar

1. \(S \rightarrow a \ A \ B \ e \)
2. \(A \rightarrow A \ b \ c \)
3. \(| \ b \)
4. \(B \rightarrow d \)

Input: abbcde

<table>
<thead>
<tr>
<th>Sentential Form</th>
<th>Production</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbcde</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>aAbcde</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>aAde</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>aABe</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>(S)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

• How do we find the next reduction?
 • How do we do this efficiently?
Handles

- Goal: Find substring β of tree’s frontier that matches some production $A \rightarrow \beta$
 - (And that occurs in the rightmost derivation)
 - Informally, we call this substring β a handle
- Formally,
 - A handle of a right-sentential form γ is a pair $(A \rightarrow \beta, k)$ where
 - $A \rightarrow \beta$ is a production and k is the position in γ of β’s rightmost symbol.
 - If $(A \rightarrow \beta, k)$ is a handle, then replacing β at k with A produces the right
 sentential form from which γ is derived in the rightmost derivation.
 - Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols
 - \Rightarrow the parser doesn’t need to scan past the handle (only lookahead)
Example

- Grammar

1. $S \rightarrow E$
2. $E \rightarrow E + T$
3. $| E - T$
4. $| T$
5. $T \rightarrow T * F$
6. $| T / F$
7. $| F$
8. $F \rightarrow n$
9. $| id$
10. $| (E)$

<table>
<thead>
<tr>
<th>Production</th>
<th>Sentential Form</th>
<th>Handle (prod,k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1,1</td>
</tr>
<tr>
<td>3</td>
<td>$E-T$</td>
<td>3,3</td>
</tr>
<tr>
<td>5</td>
<td>$E-T*F$</td>
<td>5,5</td>
</tr>
<tr>
<td>9</td>
<td>$E-T*id$</td>
<td>9,5</td>
</tr>
<tr>
<td>7</td>
<td>$E-F*id$</td>
<td>7,3</td>
</tr>
<tr>
<td>8</td>
<td>$E-n*id$</td>
<td>8,3</td>
</tr>
<tr>
<td>4</td>
<td>$T-n*id$</td>
<td>4,1</td>
</tr>
<tr>
<td>7</td>
<td>$F-n*id$</td>
<td>7,1</td>
</tr>
<tr>
<td>9</td>
<td>$id-n*id$</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Handles for rightmost derivation of $id-n*id$
Finding reductions

• Theorem: If G is unambiguous, then every right-sentential form has a unique handle
 ▪ If we can find those handles, we can build a derivation!

• Sketch of Proof:
 ▪ G is unambiguous \Rightarrow rightmost derivation is unique
 ▪ \Rightarrow a unique production $A \rightarrow \beta$ applied to derive γ_i from γ_{i-1}
 ▪ and a unique position k at which $A \rightarrow \beta$ is applied
 ▪ \Rightarrow a unique handle $(A \rightarrow \beta, k)$

• This all follows from the definitions
Bottom-up handle pruning

- **Handle pruning**: discovering handle and reducing it
 - Handle pruning forms the basis for bottom-up parsing
- So, to construct a rightmost derivation
 \[
 S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input}
 \]
- Apply the following simple algorithm

 for \(i \leftarrow n \) to 1 by \(-1\)

 Find handle \((A_i \rightarrow \beta_i , k_i)\) in \(\gamma_i\)

 Replace \(\beta_i\) with \(A_i\) to generate \(\gamma_{i-1}\)

 - This takes \(2n\) steps
Shift-reduce parsing algorithm

- Maintain a stack of terminals and non-terminals matched so far
 - Rightmost terminal/non-terminal on top of stack
 - Since we’re building rightmost derivation, will look at top elements of stack for reductions

```
push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
  if the top of the stack is a handle A→β
    then // reduce β to A
      pop |β| symbols off the stack
      push A onto the stack
  else if (token ≠ EOF)
    then // shift
      push token
      token ← next_token()
  else // need to shift, but out of input
    report an error
```
Example

- Grammar
 1. \(S \rightarrow E \)
 2. \(E \rightarrow E + T \)
 3. \(| E - T \)
 4. \(| T \)
 5. \(T \rightarrow T * F \)
 6. \(| T / F \)
 7. \(| F \)
 8. \(F \rightarrow n \)
 9. \(| id \)
 10. \(| (E) \)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Handle (prod,k)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>id-n*id</td>
<td>none</td>
<td></td>
<td>shift</td>
</tr>
<tr>
<td>id</td>
<td>-n*id</td>
<td>9,1</td>
<td>reduce 9</td>
</tr>
<tr>
<td>F</td>
<td>-n*id</td>
<td>7,1</td>
<td>reduce 7</td>
</tr>
<tr>
<td>T</td>
<td>-n*id</td>
<td>4,1</td>
<td>reduce 4</td>
</tr>
<tr>
<td>E</td>
<td>-n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-</td>
<td>n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-n</td>
<td>*id</td>
<td>8,3</td>
<td>reduce 8</td>
</tr>
<tr>
<td>E-F</td>
<td>*id</td>
<td>7,3</td>
<td>reduce 7</td>
</tr>
<tr>
<td>E-T</td>
<td>*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*</td>
<td>id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*id</td>
<td></td>
<td>9,5</td>
<td>reduce 9</td>
</tr>
<tr>
<td>E-T*F</td>
<td></td>
<td>5,5</td>
<td>reduce 5</td>
</tr>
<tr>
<td>E-T</td>
<td></td>
<td>3,3</td>
<td>reduce 3</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1,1</td>
<td>reduce 1</td>
</tr>
<tr>
<td>S</td>
<td>none</td>
<td></td>
<td>accept</td>
</tr>
</tbody>
</table>

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce

Shift/reduce parse of \(id-n*id \)
Parse tree for example
Algorithm actions

- Shift-reduce parsers have just four actions
 - Shift — next word is shifted onto the stack
 - Reduce — right end of handle is at top of stack
 - Locate left end of handle within the stack
 - Pop handle off stack and push appropriate lhs
 - Accept — stop parsing and report success
 - Error — call an error reporting/recovery routine

- Cost of operations
 - Accept is constant time
 - Shift is just a push and a call to the scanner
 - Reduce takes $|\text{rhs}|$ pops and 1 push
 - If handle-finding requires state, put it in the stack ⇒ 2x work
 - Error depends on error recovery mechanism
Finding handles

• To be a handle, a substring of sentential form \(\gamma \) must:
 - Match the right hand side \(\beta \) of some rule \(A \rightarrow \beta \)
 - There must be some rightmost derivation from the start symbol that produces \(\gamma \) with \(A \rightarrow \beta \) as the last production applied
 - Looking for rhs’s that match strings is not good enough

• How can we know when we have found a handle?
 - LR(1) parsers use DFA that runs over stack and finds them
 - One token look-ahead determines next action (shift or reduce) in each state of the DFA.
 - A grammar is LR(1) if we can build an LR(1) parser for it
• LR(0) parsers: no look-ahead
LR(1) parsing

- Can use a set of tables to describe LR(1) parser

- ocamlyacc automates the process of building the tables
 - Standard library Parser module interprets the tables
- LR parsing invented in 1965 by Donald Knuth
- LALR parsing invented in 1969 by Frank DeRemer
LR(1) parsing algorithm

- Two tables
 - ACTION: reduce/shift/accept
 - GOTO: state to be in after reduce
- Cost
 - |input| shifts
 - |derivation| reductions
 - One accept
- Detects errors by failure to shift, reduce, or accept

```java
stack.push(INVALID); stack.push(s0);
not_found = true;
token = scanner.next_token();
do while (not_found) {
    s = stack.top();
    if ( ACTION[s,token] == "reduce A→β" ) {
        stack.popnum(2*|β|); // pop 2*|β| symbols
        s = stack.top();
        stack.push(A);
        stack.push(GOTO[s,A]);
    }
    else if ( ACTION[s,token] == "shift si" ) {
        stack.push(token); stack.push(si);
        token ← scanner.next_token();
    }
    else if ( ACTION[s,token] == "accept" && token == EOF )
        not_found = false;
    else report a syntax error and recover;
}
report success;
```
Example parser table

- `ocamlyacc -v ex1_parser.mly` — produce `.output` file with parser table

<table>
<thead>
<tr>
<th>state</th>
<th>action</th>
<th>goto</th>
<th>productions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>s3 s4</td>
<td>acc</td>
<td>6 7 <code>entry → . main</code></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>r4</td>
<td></td>
<td>term → INT .</td>
</tr>
<tr>
<td>4</td>
<td>s3 s4</td>
<td>8 7</td>
<td>term → (. expr)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>s9 s10</td>
<td></td>
<td>main → expr . EOL</td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td></td>
<td>expr → term .</td>
</tr>
<tr>
<td>8</td>
<td>s10 s11</td>
<td></td>
<td>expr → expr . + term</td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td></td>
<td>main → expr EOL .</td>
</tr>
<tr>
<td>10</td>
<td>s3 s4</td>
<td>12</td>
<td>expr → expr + . term</td>
</tr>
<tr>
<td>11</td>
<td>r5</td>
<td></td>
<td>term → (expr) .</td>
</tr>
<tr>
<td>12</td>
<td>r3</td>
<td></td>
<td>expr → expr + term .</td>
</tr>
</tbody>
</table>

NB: Numbers in shift refer to state numbers
Numbers in reduction refer to production numbers
Example parse (N+N+N)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N+N+N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1,N,3</td>
<td>+N+N+N</td>
<td>r4</td>
</tr>
<tr>
<td>1,term,7</td>
<td>+N+N+N</td>
<td>r2</td>
</tr>
<tr>
<td>1,expr,6</td>
<td>+N+N+N</td>
<td>s10</td>
</tr>
<tr>
<td>1,expr,6,+10</td>
<td>N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1,expr,6,+10,N,3</td>
<td>+N</td>
<td>r4</td>
</tr>
<tr>
<td>1,expr,6,+10,term,12</td>
<td>+N</td>
<td>r3</td>
</tr>
<tr>
<td>1,expr,6</td>
<td>+N</td>
<td>s10</td>
</tr>
<tr>
<td>1,expr,6,+10</td>
<td>N</td>
<td>s3</td>
</tr>
<tr>
<td>1,expr,6,+10,N,3</td>
<td></td>
<td>r4</td>
</tr>
<tr>
<td>1,expr,6,+10,term,12</td>
<td></td>
<td>r3</td>
</tr>
<tr>
<td>1,expr,6</td>
<td></td>
<td>s9</td>
</tr>
<tr>
<td>1,expr,6,EOL,9</td>
<td></td>
<td>r1</td>
</tr>
<tr>
<td>accept</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example parser table (cont’d)

• Notes
 - Notice derivation is built up (bottom to top)
 - Table only contains kernel of each state
 - Apply closure operation to see all the productions in the state

• LR(1) parsing requires start symbol not on any rhs
 - Thus, ocamlyacc actually adds another production
 - `%entry% → \001 main`
 - (so the `acc` in the previous table is a slight fib)

• Values returned from actions stored on the stack
 - Reduce triggers computation of action result
Why does this work?

• Stack = upper fringe
 - So all possible handles on top of stack
 - Shift inputs until top elements of stack form a handle

• Build a handle-recognizing DFA
 - Language of handles is regular
 - ACTION and GOTO tables encode the DFA
 - Shift = DFA transition
 - Reduce = DFA accept
 - New state = GOTO[state at top of stack (after pop), lhs]

• If we can build these tables, grammar is LR(1)
LR(k) items

• An LR(k) item is a pair [P, δ], where
 - P is a production A → β with a • at some position in the rhs
 - δ is a lookahead string of length ≤ k (words or $)
 - The • in an item indicates the position of the top of the stack

• LR(1):
 - [A → •βγ,a] — input so far consistent with using A → βγ immediately after symbol on top of stack
 - [A → β•γ,a] — input so far consistent with using A → βγ at this point in the parse, and parser has already recognized β
 - [A → βγ•,a] — parser has seen βγ, and lookahead of a consistent with reducing to A

• LR(1) items represent valid configurations of an LR(1) parser; DFA states are sets of LR(1) items
LR(k) items, cont’d

• Ex: $A \rightarrow BCD$ with lookahead a can yield 4 items
 - $[A \rightarrow \cdot BCD, a]$, $[A \rightarrow B \cdot CD, a]$, $[A \rightarrow BC \cdot D, a]$, $[A \rightarrow BCD \cdot, a]$
 - Notice: set of LR(1) items for a grammar is finite

• Carry lookaheads along to choose correct reduction
 - Lookahead has no direct use in $[A \rightarrow \beta \cdot \gamma, a]$
 - In $[A \rightarrow \beta \cdot, a]$, a lookahead of $a \Rightarrow$ reduction by $A \rightarrow \beta$
 - For $\{ [A \rightarrow \beta \cdot, a], [B \rightarrow \gamma \cdot \delta, b] \}$
 - Lookahead of $a \Rightarrow$ reduce to A
 - $\text{FIRST}(\delta) \Rightarrow$ shift
 - (else error)
LR(1) table construction

- States of LR(1) parser contain sets of LR(1) items
 - Initial state s0
 - Assume S’ is the start symbol of grammar, does not appear in rhs
 - (Extend grammar if necessary to ensure this)
 - $s_0 = \text{closure}([S' \rightarrow \cdot S, \epsilon]) \quad (\epsilon = \text{EOF})$
 - For each s_k and each terminal/non-terminal X, compute new state $\text{goto}(s_k, X)$
 - Use $\text{closure}()$ to “fill out” kernel of new state
 - If the new state is not already in the collection, add it
 - Record all the transitions created by $\text{goto}()$
 - These become ACTION and GOTO tables
 - i.e., the handle-finding DFA
 - This process eventually reaches a fixpoint
Closure()

- \([A \rightarrow \beta \cdot B\delta, a]\) implies \([B \rightarrow \cdot \gamma, x]\) for each production with \(B\) on lhs and each \(x \in \text{FIRST}(\delta a)\)
 - (If you’re about to see a \(B\), you may also see a \(\gamma\))

Closure(s)
while (s is still changing)
 \(\forall\) items \([A \rightarrow \beta \cdot B\delta, a]\) \(\in s\) \hspace{1cm} // item with \(\cdot\) to left of nonterminal \(B\)
 \(\forall\) productions \(B \rightarrow \gamma \in P\) \hspace{1cm} // all productions for \(B\)
 \(\forall\) \(b \in \text{FIRST}(\delta a)\) \hspace{1cm} // tokens appearing after \(B\)
 if \([B \rightarrow \cdot \gamma, b]\) \(\not\in s\) \hspace{1cm} // form LR(1) item w/ new lookahead
 then add \([B \rightarrow \cdot \gamma, b]\) to s \hspace{1cm} // add item to s if new

- Classic fixed-point method
- Halts because \(s \subset \text{ITEMS}\) (worklist version is faster)
 - Closure “fills out” a state
Example — closure with LR(0)

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow T+E \\
| & \quad T \\
T & \rightarrow \text{id}
\end{align*}
\]

\[
\begin{align*}
[S & \rightarrow \cdot E] \\
[E & \rightarrow \cdot T+E] \\
[E & \rightarrow \cdot T] \\
[T & \rightarrow \cdot \text{id}]
\end{align*}
\]

[kernel item]
[derived item]
Example — closure with LR(1)

S → E
E → T+E
| T
T → id

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[kernel item]
[derived item]

[E → T+ • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]
Goto

- **Goto**\((s,x)\) computes the state that the parser would reach if it recognized an \(x\) while in state \(s\)
 - Goto\((\{[A\rightarrow\beta\cdot X\delta,a]\},X)\) produces \([A\rightarrow\beta X\cdot\delta,a]\)
 - Should also includes closure\(([A\rightarrow\beta X\cdot\delta,a])\)

Goto\((s,X)\)
\[
\text{new} \leftarrow \emptyset \\
\forall \text{ items } [A\rightarrow\beta\cdot X\delta,a] \in s \quad \text{// for each item with • to left of X} \\
\quad \text{new} \leftarrow \text{new} \cup [A\rightarrow\beta X\cdot\delta,a] \quad \text{// add item with • to right of X} \\
\text{return closure(new)} \quad \text{// remember to compute closure!}
\]

- Not a fixed-point method!
- Straightforward computation
- Uses closure\((\)\)
- Goto() moves forward
Example — goto with LR(0)

\[S \rightarrow E \]
\[E \rightarrow T+E \]
\[T \rightarrow \text{id} \]

\[[S \rightarrow \cdot E]\]
\[[E \rightarrow \cdot T+E]\]
\[[E \rightarrow \cdot T]\]
\[[T \rightarrow \cdot \text{id}]\]

[kernel item]
[derived item]
Example — goto with LR(1)

S → E
E → T+E
 | T
T → id

[S → E •, $]
[E → T • +E, $]
[E → T •, $]
[T → id •, +]
[T → id •, $]

[kernel item]
[derived item]
Building parser states

| cc₀ ← closure ([S’ → •S, $]) |
| CC ← { cc₀ } |
| while (new sets are still being added to CC) |
| for each unmarked set ccₗ ∈ CC |
| mark ccₗ as processed |
| for each x following a • in an item in ccₗ |
| temp ← goto(ccₗ, x) |
| if temp ∉ CC |
| then CC ← CC ∪ { temp } |
| record transitions from ccₗ to temp on x |

- **CC** = canonical collection (of LR(k) items)
- Fixpoint computation (worklist version)
- Loop adds to **CC**
 - **CC** ⊆ 2^ITEMS, so **CC** is finite
Example LR(0) states

\[S \rightarrow E \]
\[E \rightarrow T+E \]
\[T \rightarrow \text{id} \]

\([[S \rightarrow \cdot E]]\]
\([[E \rightarrow \cdot T+E]]\]
\([[E \rightarrow \cdot T]]\]
\([[T \rightarrow \cdot \text{id}]]\]

\([[E \rightarrow T+\cdot E]]\]
\([[E \rightarrow \cdot T+E]]\]
\([[E \rightarrow \cdot T]]\]
\([[T \rightarrow \cdot \text{id}]]\]

\([[E \rightarrow T+\cdot E]]\]
\([[E \rightarrow \cdot T+E]]\]
\([[E \rightarrow \cdot T]]\]
\([[T \rightarrow \cdot \text{id}]]\]

\([[S \rightarrow E \cdot]]\]
\([[T \rightarrow \text{id} \cdot]]\]
\([[E \rightarrow T+\cdot E \cdot]]\]
Example LR(1) states

\[S \rightarrow E \]
\[E \rightarrow T+E \]
\[T \rightarrow \text{id} \]
\[[S \rightarrow \cdot E, \$] \]
\[[E \rightarrow \cdot T+E, \$] \]
\[[E \rightarrow \cdot T, \$] \]
\[[T \rightarrow \cdot \text{id}, \text{ +}] \]
\[[T \rightarrow \cdot \text{id}, \$] \]

\[[E \rightarrow T \cdot \text{+, } \$] \]
\[[E \rightarrow T \cdot, \$] \]

\[[T \rightarrow \text{id} \cdot, \text{ +}] \]
\[[T \rightarrow \text{id} \cdot, \$] \]

\[[E \rightarrow T + \cdot E, \$] \]
\[[E \rightarrow \cdot T+E, \$] \]
\[[E \rightarrow \cdot T, \$] \]
\[[T \rightarrow \cdot \text{id}, \text{ +}] \]
\[[T \rightarrow \cdot \text{id}, \$] \]

\[[E \rightarrow T + E \cdot, \$] \]
Building ACTION and GOTO tables

∀ set \(s_x \in S \)
∀ item \(i \in s_x \)
 if \(i \) is \([A\rightarrow\beta \cdot a\gamma,b]\) and \(\text{goto}(s_x,a) = s_k \), \(a \in \text{terminals} \) // • to left of terminal a
 then \(\text{ACTION}[x,a] \leftarrow \text{“shift } k\text{”} \) // ⇒ shift if lookahead = \(a \)
 else if \(i \) is \([S'\rightarrow S \cdot,\$]\) // start production done,
 then \(\text{ACTION}[x,\$] \leftarrow \text{“accept”} \) // ⇒ accept if lookahead = \(\$ \)
 else if \(i \) is \([A\rightarrow\beta \cdot,a]\) // • all the way to right
 then \(\text{ACTION}[x,a] \leftarrow \text{“reduce } A\rightarrow\beta\text{”} \) // → production done
∀ \(n \in \text{nonterminals} \)
 if \(\text{goto}(s_x,n) = s_k \)
 then \(\text{GOTO}[x,n] \leftarrow k \) // reduce if lookahead = \(a \)

- Many items generate no table entry
 - e.g., \([A\rightarrow\beta \cdot B\alpha,a]\) does not, but closure ensures that all the rhs’s for \(B \) are in \(sx \)
Ex ACTION and GOTO tables

1. $S \rightarrow E$
2. $E \rightarrow T+E$
3. $| T$
4. $T \rightarrow id$

<table>
<thead>
<tr>
<th>S0</th>
<th>$[S \rightarrow \cdot E$, $$]$</th>
<th>$[E \rightarrow \cdot T+E$, $$]$</th>
<th>$[E \rightarrow \cdot T$, $$]$</th>
<th>$[T \rightarrow \cdot id$, $+]$</th>
<th>$[T \rightarrow \cdot id$, $$]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>$[S \rightarrow E \cdot$, $$]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>$[E \rightarrow T \cdot +E$, $$]$</td>
<td>$[E \rightarrow T \cdot$, $$]$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>$[T \rightarrow id \cdot$, $+]$</td>
<td>$[T \rightarrow id \cdot$, $$]$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>$[E \rightarrow T + \cdot E$, $$]$</td>
<td>$[E \rightarrow \cdot T+E$, $$]$</td>
<td>$[E \rightarrow \cdot T$, $$]$</td>
<td>$[T \rightarrow \cdot id$, $+]$</td>
<td>$[T \rightarrow \cdot id$, $$]$</td>
</tr>
<tr>
<td>S5</td>
<td>$[E \rightarrow T + E \cdot$, $$]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+ $$</td>
</tr>
<tr>
<td>S0</td>
<td>s3 E 1 2</td>
</tr>
<tr>
<td>S1</td>
<td>acc</td>
</tr>
<tr>
<td>S2</td>
<td>s4 r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4 r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3 5 2</td>
</tr>
<tr>
<td>S5</td>
<td>r2</td>
</tr>
</tbody>
</table>
Ex ACTION and GOTO tables

1. $S \rightarrow E$
2. $E \rightarrow T+E$
3. $T \mid$ T
4. $T \rightarrow$ id

Entries for shift

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>$+$</td>
</tr>
<tr>
<td>$s3$</td>
<td></td>
</tr>
<tr>
<td>$s4$</td>
<td></td>
</tr>
<tr>
<td>$s4$</td>
<td></td>
</tr>
<tr>
<td>$s3$</td>
<td></td>
</tr>
</tbody>
</table>

$S0$ $[S \rightarrow \cdot E, \$, $T \rightarrow \cdot id, +]$ $[T \rightarrow \cdot id, \$, $T \rightarrow \cdot id, +]$ E $S1$ $S2$ $S3$ $S4$ $S5$
Ex ACTION and GOTO tables

1. $S \rightarrow E$
2. $E \rightarrow T+E$
3. $T | T$
4. $T \rightarrow \text{id}$

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
</table>
| id | $+$ | $\$ | E | T
| S_0 | $s3$ | acc | 1 | 2 |
| S_1 | | | | |
| S_2 | $s4$ | $r3$ | | |
| S_3 | $r4$ | | | |
| S_4 | $s3$ | $r4$ | 5 | 2 |
| S_5 | | $r2$ | | |

Entry for accept

[S $\rightarrow \cdot E$, $\$]
[E $\rightarrow \cdot T+E$, $\$]
[E $\rightarrow \cdot T$, $\$]
[T $\rightarrow \cdot \text{id}$, $+$]
[T $\rightarrow \cdot \text{id}$, $\$]

[S $\rightarrow E \cdot$, $\$]
[T $\rightarrow \text{id} \cdot$, $+$]
[T $\rightarrow \text{id} \cdot$, $\$]

[S $\rightarrow E \cdot$, $\$]
[T $\rightarrow \text{id} \cdot$, $+$]
[T $\rightarrow \text{id} \cdot$, $\$]

[S $\rightarrow E \cdot$, $\$]
Ex ACTION and GOTO tables

1. $S \rightarrow E$
2. $E \rightarrow T+E$
3. $T \mid T$
4. $T \rightarrow id$

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
<td>$</td>
</tr>
<tr>
<td>S_0</td>
<td>s3</td>
<td>E</td>
</tr>
<tr>
<td>S_1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>S_2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>S_3</td>
<td>r4</td>
<td>T</td>
</tr>
<tr>
<td>S_4</td>
<td>s3</td>
<td>5</td>
</tr>
<tr>
<td>S_5</td>
<td>r2</td>
<td>2</td>
</tr>
</tbody>
</table>

Entries for reduce

- $S_0 \rightarrow \bullet E, \$]
- $E \rightarrow \bullet T+E, \$
- $E \rightarrow \bullet T, \$
- $T \rightarrow \bullet id, +$
- $T \rightarrow \bullet id, \$
- $E \rightarrow T + \bullet E, \$
- $E \rightarrow \bullet T+E, \$
- $E \rightarrow \bullet T, \$
- $T \rightarrow \bullet id, +$
- $T \rightarrow \bullet id, \$
- $E \rightarrow T + E \bullet, \$

Entries:

- $E \downarrow$
- $S_0 \rightarrow E \bullet, \$
- $S_1 \rightarrow E \bullet, \$
- $S_2 \rightarrow E \bullet, +$
- $S_3 \rightarrow E \bullet, +$
- $S_4 \rightarrow E \bullet, +$
- $S_5 \rightarrow E \bullet, +$
Ex ACTION and GOTO tables

1. $S \rightarrow E$
2. $E \rightarrow T+E$
3. $\mid T$
4. $T \rightarrow \text{id}$

<table>
<thead>
<tr>
<th>S0</th>
<th>[S \rightarrow \cdot E, $]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[E \rightarrow \cdot T+E, $]</td>
</tr>
<tr>
<td></td>
<td>[E \rightarrow \cdot T, $]</td>
</tr>
<tr>
<td></td>
<td>[T \rightarrow \cdot \text{id}, +]</td>
</tr>
<tr>
<td></td>
<td>[T \rightarrow \cdot \text{id}, $]</td>
</tr>
</tbody>
</table>

| S1 | [S \rightarrow E \cdot, $] |

Entries for GOTO

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>E</td>
</tr>
<tr>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
</tr>
<tr>
<td>S1</td>
<td>acc</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
</tr>
<tr>
<td>S5</td>
<td>r2</td>
</tr>
</tbody>
</table>

59
What can go wrong?

• What if set \(s \) contains \([A \rightarrow \beta \cdot a \gamma, b]\) and \([B \rightarrow \beta \cdot, a]\) ?
 - First item generates “shift”, second generates “reduce”
 - Both define \(\text{ACTION}[s,a] \) — cannot do both actions
 - This is a *shift/reduce conflict*

• What if set \(s \) contains \([A \rightarrow \gamma \cdot, a]\) and \([B \rightarrow \gamma \cdot, a]\) ?
 - Each generates “reduce”, but with a different production
 - Both define \(\text{ACTION}[s,a] \) — cannot do both reductions
 - This is called a *reduce/reduce conflict*

• In either case, the grammar is not LR(1)
Shift/reduce conflict

| %token <int> INT |
| %token EOL PLUS LPAREN RPAREN |
| %start main /* the entry point */ |
| %type <int> main |

- Associativity unspecified
 - Ambiguous grammars always have conflicts
 - But, some non-ambiguous grammars also have conflicts
Solving conflicts

- Refactor grammar
- Specify operator precedence and associativity

<table>
<thead>
<tr>
<th>Operator</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUS, MINUS</td>
<td>Lowest precedence</td>
</tr>
<tr>
<td>TIMES, DIV</td>
<td>Medium precedence</td>
</tr>
<tr>
<td>UMINUS</td>
<td>Highest precedence</td>
</tr>
</tbody>
</table>

- Lots of details here
 - See “12.4.2 Declarations” at http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html#htoc151

- When comparing operator on stack with lookahead
 - Shift if lookahead has higher prec OR same prec, right assoc
 - Reduce if lookahead has lower prec OR same prec, left assoc

- Can use smaller, simpler (ambiguous) grammars
 - Like the one we just saw
Left vs. right recursion

• Right recursion
 ▪ Required for termination in top-down parsers
 ▪ Produces right-associative operators

• Left recursion
 ▪ Works fine in bottom-up parsers
 ▪ Limits required stack space
 ▪ Produces left-associative operators

• Rule of thumb
 ▪ Left recursion for bottom-up parsers
 ▪ Right recursion for top-down parsers
Reduce/reduce conflict (1)

• Often these conflicts suggest a serious problem
 ▪ Here, there’s a deep ambiguity
• Grammar not ambiguous, but not enough lookahead to distinguish last two `expr` productions
Shrinking the tables

• Combine terminals
 - E.g., number and identifier, or + and -, or * and /
 - Directly removes a column, may remove a row

• Combine rows or columns (table compression)
 - Implement identical rows once and remap states
 - Requires extra indirection on each lookup
 - Use separate mapping for ACTION and for GOTO

• Use another construction algorithm
 - LALR(1) used by ocamlyacc
LALR(1) parser

• Define the core of a set of LR(1) items as
 ■ Set of LR(0) items derived by ignoring lookahead symbols

\[
\begin{align*}
 [E \rightarrow a \cdot, b] & \quad [E \rightarrow a \cdot] \\
 [A \rightarrow a \cdot, c] & \quad [A \rightarrow a \cdot]
\end{align*}
\]

LR(1) state Core

• LALR(1) parser merges two states if they have the same core

• Result
 ■ Potentially much smaller set of states
 ■ May introduce reduce/reduce conflicts
 ■ Will not introduce shift/reduce conflicts
LALR(1) example

- Introduces reduce/reduce conflict
 - Can reduce either $E \rightarrow a$ or $A \rightarrow ba$ for lookahead = b

LR(1) states

- $[E \rightarrow a \cdot, b]$
- $[A \rightarrow ba \cdot, c]$
- $[E \rightarrow a \cdot, d]$
- $[A \rightarrow ba \cdot, b]$

Merged state

- $[E \rightarrow a \cdot, b]$
- $[A \rightarrow ba \cdot, c]$
- $[E \rightarrow a \cdot, d]$
- $[A \rightarrow ba \cdot, b]$
LALR(1) vs. LR(1)

• Example grammar

\[
\begin{align*}
S' & \rightarrow S \\
S & \rightarrow aAd \mid bBd \mid aBe \mid bAe \\
A & \rightarrow c \\
B & \rightarrow c
\end{align*}
\]

• LR(0) ?

• LR(1) ?

• LALR(1) ?
LR(k) Parsers

• Properties
 - Strictly more powerful than LL(k) parsers
 - Most general non-backtracking shift-reduce parser
 - Detects error as soon as possible in left-to-right scan of input
 - Contents of stack are viable prefixes
 - Possible for remaining input to lead to successful parse
Error handling (lexing)

- What happens when input not handled by any lexing rule?
 - An exception gets raised
 - Better to provide more information, e.g.,

```haskell
rule token = parse
...
| _ as lxm { Printf.printf "Illegal character %c" lxm;
    failwith "Bad input" }
```

- Even better, keep track of line numbers
 - Store in a global-ish variable (oh no!)
 - Increment as a side effect whenever `\n` recognized
Error handling (parsing)

• What happens when parsing a string not in the grammar?
 - Reject the input
 - Do we keep going, parsing more characters?
 - May cause a cascade of error messages
 - Could be more useful to programmer, if they don’t need to stop at the first error message (what do you do, in practice?)

• Ocamlyacc includes a basic error recovery mechanism
 - Special token `error` may appear in rhs of production
 - Matches erroneous input, allowing recovery
Error example (1)

- If unexpected input appears while trying to match \texttt{expr}, match token to \texttt{error}
 - Effectively treats token as if it is produced from \texttt{expr}
 - Triggers error action
If unexpected input appears while trying to match term, match tokens to error

- Pop every state off the stack until LPAREN on top
- Scan tokens up to RPAREN, and discard those, also
- Then match error production
Error recovery in practice

• A very hard thing to get right!
 ▪ Necessarily involves guessing at what malformed inputs you may see

• How useful is recovery?
 ▪ Compilers are very fast today, so not so bad to stop at first error message, fix it, and go on
 ▪ On the other hand, that does involve some delay

• Perhaps the most important feature is good error messages
 ▪ Error recovery features useful for this, as well
 ▪ Some compilers are better at this than others
OCaml yacc tip

- Setting OCAMLRUNPARAM=p will cause the parsing steps to be printed out as the parser runs.
- (And setting OCAMLRUNPARAM=b will tell OCaml to print a stack backtrace for any thrown exceptions.)
Real programming languages

• Essentially all real programming languages don’t quite work with parser generators
 ▪ Even Java is not quite LALR(1)

• Thus, real implementations play tricks with parsing actions to resolve conflicts

• In-class exercise: C typedefs and identifier declarations/definitions
Additional Parsing Technologies

• For a long time, parsing was a “dead” field
 - Considered solved a long time ago
• Recently, people have come back to it
 - LALR parsing can have unnecessary parsing conflicts
 - LALR parsing tradeoffs more important when computers were slower and memory was smaller
• Many recent new (or new-old) parsing techniques
 - GLR — generalized LR parsing, for ambiguous grammars
 - LL(*) — ANTLR
 - Packrat parsing — for parsing expression grammars
 - etc...
• The input syntax to many of these looks like yacc/lex
Designing language syntax

- **Idea 1:** Make it look like other, popular languages
 - Java did this (OO with C syntax)

- **Idea 2:** Make it look like the domain
 - There may be well-established notation in the domain (e.g., mathematics)
 - Domain experts already know that notation

- **Idea 3:** Measure design choices
 - E.g., ask users to perform programming (or related) task with various choices of syntax, evaluate performance, survey them on understanding
 - This is very hard to do!

- **Idea 4:** Make your users adapt
 - People are really good at learning...