Lecture 16
Applying Thread Pools
Task Submission

• ExecutorService objects manage thread pools
• They also include methods for task submission
 – void execute(Runnable command)
 Executes the given command at some time in the future.
 – <T> Future<T> submit(Callable<T> task)
 Submits a value-returning task for execution and returns a Future representing the pending results of the task.
 – Future<?> submit(Runnable task)
 Submits a Runnable task for execution and returns a Future representing that task.
• ???
 – Purpose of submit() is to permit determination of status of task, collect return value
 – Tasks have four phases:
 • Created
 • Submitted
 • Started
 • Completed
 – Future includes get(), which can be used to collect return value / check completion
 – Other methods in Future include boolean isDone()
Callable vs. Runnable

• Runnable
 – Can be fed to Thread constructor
 – Cannot return value
 – Cannot throw checked exceptions

• Callable
 – Cannot be fed to Thread constructor
 – Can return value
 – Can throw checked exceptions (these are wrapped inside an ExecutionException)
Defining Task Boundaries

• Recall: tasks are “logical chunks of independent computation”
• Identifying good task boundaries allows for more concurrency
• Some applications (e.g. the web-server examples) have a natural notion of task (e.g. request)
• In other cases you may need to work some!
Defining Task Boundaries: An Example

• Example comes from JCIP pp. 124ff: page renderer
 – Page renderer is responsible for converting HTML code into something viewable in a web browser
 – Tasks include formatting text, downloading images

• What are good tasks for rendering?
public class SingleThreadRenderer {
 void renderPage(CharSequence source) {
 renderText(source);
 List<ImageData> imageData = new ArrayList<ImageData>();
 for (ImageInfo imageInfo : scanForImageInfo(source))
 imageData.add(imageInfo.downloadImage());
 for (ImageData data : imageData)
 renderImage(data);
 }
}

- Design decision: one task!
 - Text is rendered
 - Then images are downloaded, one-by-one
- Generally, this would yield poor responsiveness
 - Downloading images requires accessing network
 - Rendering text can be done locally
 - So image-processing would dominate!
public class FutureRenderer {
 private final ExecutorService executor = Executors.newCachedThreadPool();
 void renderPage(CharSequence source) {
 final List<ImageInfo> imageInfos = scanForImageInfo(source);
 Callable<List<ImageData>> task =
 new Callable<List<ImageData>>() {
 public List<ImageData> call() {
 List<ImageData> result = new ArrayList<ImageData>()
 for (ImageInfo imageInfo : imageInfos)
 result.add(imageInfo.downloadImage());
 return result;
 }
 };
 Future<List<ImageData>> future = executor.submit(task);
 renderText(source);
 try {
 List<ImageData> imageData = future.get();
 for (ImageData data : imageData)
 renderImage(data);
 } catch (InterruptedException e) {
 } catch (ExecutionException e) { ... }
 }
}
Page Renderer(2): Observations

• There is some parallelism

 Text rendering, image downloading done in parallel

• Will this yield a big speed-up?

 Not for pages with lots of images!

 • Downloading of images is still done sequentially

 • The image downloading task could take much longer than text rendering
Page Renderer(3): More Tasks

• Each image can be downloaded independently!
• We can exploit this to refine task boundaries
 – One task for text
 – One task for each image
 – When each image download finishes, image can be rendered
• How can we wait for all the downloads?
 – One approach: loop
 • Iterate for the number of images
 • Perform a `get()` on each `Future`
 • But what if one image takes a lot longer to download
 – Better approach: `CompletionService`
CompletionService

- Extends ExecutorService with a blocking completion queue
 - When a task that has been submitted finishes, a Future for it is put in completion queue
 - A user of the completion service can extract next finished computation by performing `take()` on completion service
- This permits processing of task results in order that they were completed
public class Renderer {
 private final ExecutorService executor;

 Renderer(ExecutorService executor) { this.executor = executor; }

 void renderPage(CharSequence source) {
 final List<ImageInfo> info = scanForImageInfo(source);
 CompletionService<ImageData> completionService =
 new ExecutorCompletionService<ImageData>(executor);
 for (final ImageInfo imageInfo : info)
 completionService.submit(
 new Callable<ImageData>() {
 public ImageData call() {
 return imageInfo.downloadImage();
 }
 });

 renderText(source);

 try {
 for (int t = 0, n = info.size(); t < n; t++) {
 Future<ImageData> f = completionService.take();
 ImageData imageData = f.get();
 renderImage(imageData);
 }
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 } catch (ExecutionException e) {
 throw launderThrowable(e.getCause());
 }
 }
}

Designing Thread Pools

• Considerations
 – How big?
 – What execution policy?
• Decisions about these considerations are influenced by several factors
 – Task dependencies
 • Some tasks are independent
 • Some require results of other tasks
 • Some tasks will even spawn other tasks whose results they need
 – Task thread-confinement assumptions
 • Some tasks assume thread-confinement
 – Legacy single-threaded code
 – Efficiency
 • Such tasks should run in a single-threaded thread pool
 – Variability in task execution times, responsiveness requirements
 • Some tasks may run much longer than others
 • Other tasks may need quick turnarounds
 – Tasks that assume thread-specific knowledge
 • Some tasks may make assumptions about the specific thread on which they are running (e.g. if there is a ThreadLocal variable)
 • Such tasks must be handled carefully in thread-pool setting
Thread Starvation Deadlock

- An issue affecting pool sizing
- Suppose you have a fixed-size pool (say, 10)
 - Suppose 10 tasks are running, so no free threads
 - Suppose further that each of these tasks submits a task to the pool and then blocks awaiting the result
- Deadlock!
 - Each of 10 task-threads is blocking
 - There are no threads to handle new tasks on which they are blocking
 - No thread can make progress
Thread-Starvation Deadlock Example (JCIP p. 169)

```java
public class ThreadDeadlock {
    ExecutorService exec = Executors.newSingleThreadExecutor();

    public class LoadFileTask implements Callable<String> {
        // ... 
    }

    public class RenderPageTask implements Callable<String> {
        public String call() throws Exception {
            Future<String> header, footer;
            header = exec.submit(new LoadFileTask("header.html"));
            footer = exec.submit(new LoadFileTask("footer.html"));
            String page = renderBody();
            // Will deadlock -- task waiting for result of subtask
            return header.get() + page + footer.get();
        }

        private String renderBody() {
            // Here's where we would actually render the page
            return "";
        }
    }
}
```

- Thread pool in this case has one thread
- RenderPageTask spawns off two other tasks: one for page header, one for footer
- Deadlock!
Dealing with Thread-Starvation Deadlock

- Thread-starvation deadlock happens when:
 - Pool-size is bounded
 - There are task dependencies: tasks can block waiting for results of other tasks

- If an application has these features, either:
 - Make pool size unbounded
 - Make pool large enough to handle anticipated dependencies (risky!)
 - DOCUMENT REASONS FOR DECISION!
Sizing Thread Pools

• Want to avoid thread pools that are “too big” or “too small”
 – Too big: contention among threads for memory, other resources
 – Too small: bad throughput
• We have already seen one consideration for sizing thread pools: thread-deadlock starvation
• Other considerations
 – Are tasks compute or I/O intensive?
 – How many processors on system?
 – How much memory do tasks need?
 – What other possibly scarce resources (e.g. JDBC connections) are needed?
• Note
 – Sometimes you have different classes of tasks that must be run, with different profiles
 – You can use multiple thread pools and tune each independently!
Determining Thread-Pool Sizes

• Some variables
 – \(N_{\text{CPU}} \): number of CPUs
 – \(U_{\text{CPU}} \): desired utilization (0 ≤ \(U_{\text{CPU}} \) ≤ 1)
 – \(W/C \): ratio of wait time to compute time
 – \(N_{\text{threads}} \): number of threads

• For compute-intensive applications (i.e. \(W/C \) is low), good rule is \(N_{\text{threads}} = N_{\text{CPU}} + 1 \)
 – Every task blocks for some reason or another, usually (page fault, etc.)
 – Having one more thread than CPU ensures efficiency

• In general, if cycles are important resource, and threads are homogeneous, independent, then \(N_{\text{threads}} = N_{\text{CPU}} \times U_{\text{CPU}} \times (1 + W/C) \)

• Example
 – Suppose
 • \(N_{\text{CPU}} = 8 \) (8-core machine)
 • \(U_{\text{CPU}} = 0.5 \) (machine is free ½ of time to deal with other applications)
 • \(W/C = 2 \) (so threads wait on average 2/3 of time they are running)
 – Then \(N_{\text{threads}} = 8 \times 0.5 \times (1+2) = 12. \)

• Resources besides cycles can be dealt with similarly
Other Size Considerations

• If some tasks are long-running, and others are not, and you want to use one thread pool, then:
 – Ensure number of threads is larger than number of long-running tasks
 – Otherwise, all threads eventually run long-running tasks
 – Bad for throughput, responsiveness of shorter tasks

• In this case, if you know which tasks are long-running, separate thread pools for longer, shorter tasks makes sense
Thread-Pool Execution Policies

• Executors include thread-pool execution policy
• Executors returned by
 Executors.newXXXThreadPool(), etc.
 include built-in execution policies
• These methods all use a base implementation
 given in class ThreadPoolExecutor
 – To customize execution policy, you can call the
 ThreadPoolExecutor constructor yourself
 – The parameters to the constructor allow you to modify
 the execution policy in a variety of ways
Using ThreadPoolExecutor

• General constructor for this class has following form

```java
ThreadPoolExecutor (  
    int corePoolSize,  
    int maximumPoolSize,  
    long keepAliveTime,  
    TimeUnit unit,  
    BlockingQueue<Runnable> workQueue,  
    ThreadFactory threadFactory,  
    RejectedExecutionHandler handler )
```

• Some of parameters are easy to describe

 – **corePoolSize**
 Target number of threads to keep in pool, even when there are no tasks

 – **maximumPoolSize**
 Maximum number of threads that can be active at one time

 – **keepAliveTime**
 Thread that is idle for this amount of time can be “reaped” (i.e. killed) if number of threads is bigger than corePoolSize

 – **unit**
 Time unit for interpreting keepAliveTime (TimeUnit is an enum data type)
ThreadPoolExecutor: workQueue

- Work queue stores tasks that are awaiting a thread from the thread pool
- Default for `Executors.newFixedThreadPool()`, `Executors.singleThreadExecutor()`:
 - `LinkedBlockingQueue`
 - Unbounded, so no task ever “turned away”
 - Blocks when empty, so threads idle by blocking when there are no tasks
 - Queues are FIFO, meaning tasks executed in order in which they arrive
- Default for `Executors.newCachedThreadPool()`:
 - `SynchronousQueue`
 - The executors returned by this method use an unbounded number of threads
 - `SynchronousQueue` has capacity 0!
 - When a new task arrives, synchronous queue hands it off immediately to a thread in the thread pool
 - The executor creates a new worker thread if necessary in this case
- For more control over execution order, can use `PriorityQueue` for work queue
 - Tasks executed in priority, rather than arrival, order
- To bound number of waiting tasks, can uses a bounded queue (e.g. `ArrayBlockingQueue`)
 - In this case, must decide what to do if queue is full!
 - This decision becomes the saturation policy (what to do when work queue is saturated)
 - Note: if there are inter-task dependencies, and either thread pool or work queue is bounded, then thread-starvation deadlock is possible
ThreadPoolExecutor: **handler**

- If work queue is bounded, the saturation policy determines what to do when queue is full and a new task arrives
- This is the purpose of the **handler** parameter to the `ThreadPoolExecutor` constructor
 - `handler` has type `RejectedExecutionHandler`
 - It is also called when executor has been shutdown and a new task arrives
 - It can also be set after executor is constructed by calling `setRejectedExecutionHandler()`
Saturation Policies (cont.)

- ThreadPoolExecutor implements several saturation policies as (static) classes matching RejectedExecutionHandler interface
 - **AbortPolicy** (this is the default)
 execute() throws RejectedExecutionException if queue is full
 - **DiscardPolicy**
 execute() silently discards newest task
 - **DiscardOldestPolicy**
 - execute() discards task at head of work queue (i.e. next one up for execution) and tries to resubmit current task
 - Beware if work queue is a priority queue!
 - **CallerRunsPolicy**
 - execute() runs the task in the thread calling execute()
 - This helps give worker threads time to catch up, since new invocations of execute will be blocked from that thread!
ThreadPoolExecutor:

threadFactory

- Executors need to create new threads from time to time
- The `threadFactory` parameter to `ThreadPoolExecutor constructor` determines how this is done
 - There is a default
 - Customizing `threadFactory` allows you to do common start-up / tear-down actions, assign common names, etc.
- `threadFactory` must implement interface:
  ```java
  public interface ThreadFactory {
    Thread newThread(Runnable r);
  }
  ```
- How executor uses thread factory
 - When a new worker thread is needed, executor calls `threadFactory` with a private `Runnable`
 - This `Runnable` is typically an infinite loop that takes tasks (also `Runnable`s!) from the work queue and invokes their `run()` methods
 - Note that worker threads are not passed tasks methods directly when they are created!
public class MyThreadFactory implements ThreadFactory {
 private final String poolName;
 public MyThreadFactory(String poolName) {
 this.poolName = poolName;
 }
 public Thread newThread(Runnable runnable) {
 return new MyAppThread(runnable, poolName);
 }
}
Customizing Thread Factory (2) – JCIP

p. 178

```java
public class MyAppThread extends Thread {
    public static final String DEFAULT_NAME = "MyAppThread";
    private static final AtomicInteger created = new AtomicInteger();
    private static final AtomicInteger alive = new AtomicInteger();
    public MyAppThread(Runnable r) { this(r, DEFAULT_NAME); }
    public MyAppThread(Runnable runnable, String name) {
        super(runnable, name + "-" + created.incrementAndGet());
        setUncaughtExceptionHandler( ... );
    }
    public void run() {
        ...
        try {
            alive.incrementAndGet();
            super.run();
        } finally { alive.decrementAndGet(); }
    }
    public static int getThreadsCreated() { return created.get(); }
    public static int getThreadsAlive() { return alive.get(); }
    public static boolean getDebug() { return debugLifecycle; }
    public static void setDebug(boolean b) { debugLifecycle = b; }
}
```
Customizing `ThreadPoolExecutor` at Run-Time

• Parameters passed in during construction of `ThreadPoolExecutor` can also be inspected, modified using getters, setters

• This can be dangerous!

• `Executors` class includes factory method, `unconfigurableExecutorService()`, that removes access to getters, setters