1. Give regular expressions for the following languages.
 (a) \(\{ w \in \{a, b\}^*: \text{exactly one } a \} \).
 (b) \(\{ w \in \{a, b\}^*: \text{exactly one } a \text{ or one } b \} \).
 (c) \(\{ w \in \{a, b\}^*: \text{begins with } aa \text{ and ends with } bb \} \).
 (d) \(\{ w \in \{a, b\}^*: \text{begins with } ab \text{ and ends with } ba \} \).
 (e) \(\{ w \in \{a, b\}^*: \text{does not begin with } ab \} \).
 (f) \(\{ w \in \{a, b\}^*: \text{both } aabb \text{ and } bbaa \text{ are substrings} \} \).
 (g) \(\{ w \in \{a, b\}^*: \text{either } aabb \text{ or } bbaa \text{ is a substring (or both)} \} \).

2. Prove that the following languages over the alphabet \(\Sigma = \{a, b\} \) are not regular.
 (a) \(L = \{ a^n ba^{3n} \mid n > 0 \} \)
 (b) \(L = \{ a^n b^n a^n \mid n > 0 \} \)
 (c) \(L = \{ a^n b^i \mid n > 0, i = n \text{ or } i = 2n \} \)
 (d) \(L = \{ ww^R \mid \text{where } w^R \text{ is the reverse of } w \} \)

3. Consider the following languages over the alphabet \(\Sigma = \{a, b\} \). Answer true or false to the following statements. Justify your answers. Note that if a statement is false, the simplest proof is usually but not always a counterexample.
 (a) If \(L_1 \) is nonregular and \(L_1 \subset L_2 \) then \(L_2 \) is nonregular.
 (b) If \(L_2 \) is nonregular and \(L_1 \subset L_2 \) then \(L_1 \) is nonregular.
 (c) If \(L \) is nonregular then its complement \(\overline{L} \) is nonregular.
 (d) If \(L_1 \) is regular, then \(L_1 \cup L_2 \) is regular for any language \(L_2 \).
 (e) If \(L_1 \) and \(L_2 \) are nonregular, then \(L_1 \cap L_2 \) is nonregular.

4. Consider the following regular expression:
 \[a^* b^* (aa \cup bbb)^* \]
 Convert this regular expression into a NFA using the construction given in class.

5. Consider the following language over the alphabet \(\Sigma = \{a, b\} \).
 \(L = \{ w \mid \text{all } a's \text{ in } w \text{ come before all } b's \text{ and } |w| \geq 1 \} \)
 (a) Give a DFA with at most four states that accepts \(L \).
 (b) Convert this DFA into a regular expression using the construction given in class.
 (c) Simplify your final regular expression.