1. Consider the “monotropic” program

\[
\begin{align*}
\text{minimize} & \quad \|x\|_\infty \\
\text{subject to} & \quad Ax = b.
\end{align*}
\]

(a) Write this as an unconstrained (or implicitly constrained) problem using the characteristic function of the zero vector \(\chi_0(z)\). This function is zero if it’s argument is zero, and infinite otherwise.

Solution: Put your solution here

(b) What is the conjugate of \(f(z) = \|z\|_\infty\)?

Solution: Put your solution here

(c) What is the conjugate of \(g(z) = \chi_0(z)\)?

Solution: Put your solution here

(d) Using the conjugate functions, write down the dual of (1).

Solution: Put your solution here

2. Consider the linear program

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0.
\end{align*}
\]

(a) Write the optimality conditions for this problem (i.e., the KKT system).

Solution: Put your solution here

(b) Write the Lagrangian for this problem.

Solution: Put your solution here

(c) Minimize out the primal variables in the Lagrangian, and write the dual formulation of this linear program.
3. Consider the problem

\[\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g(x) \leq 0.
\end{align*} \]

Let \(x_0 \) be a solution to this problem, and \(\lambda_0 \) be the corresponding optimal Lagrange multiplier. Now, define a perturbed problem

\[\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g(x) \leq \epsilon
\end{align*} \]

where \(\epsilon \) is a vector. Let \(x_\epsilon \) be a solution to the perturbed problem. Note, if we put large negative values in \(\epsilon \), then the constraint set gets smaller, and we expect the corresponding value of \(f(x_\epsilon) \) to increase. Prove the “sensitivity bound”

\[f(x_0) - \lambda_0^T \epsilon \leq f(x_\epsilon). \]

This bound shows that the Lagrange multipliers determine how much the objective increases as the vector \(\epsilon \) becomes more negative.

Solution: Put your solution here