Prim’s Algorithm

procedure prim(G,W,s)

for each vertex v ∈ V[G] do
 d[v] ← ∞
 π[v] ← NIL
end for
outside ← V[G]

d[s] ← 0
while outside ≠ φ do
 u ← Extract_Min(outside)
 for each v adjacent to u do
 if v ∈ outside and W[u,v] < d[v] then
 d[v] ← W[u,v]
 π[v] ← u
 end if
 end for
end while

end procedure
procedure prim(G,W)

for i = 1 to n do
 d[i] ← ∞
 outside[i] ← true
 π[i] ← NIL
end for

d[0] ← ∞

d[1] ← 0

for i = 1 to n do
 k ← 0
 for j = 1 to n do
 if outside[j] and d[j] ≤ d[k] then k ← j
 outside[k] := false
 end for
 for j = 1 to n do
 if outside[j] and W[j,k] < d[j] then
 d[j] ← W[j,k]
 π[j] ← k
 end if
 end for
end for

end procedure
Prim’s Algorithm
Sparse Graphs

procedure prim(G,W)

 for i = 1 to n do
 MinHeap[i] ← i
 WhereInHeap[i] ← i
 d[i] ← ∞
 outside[i] ← true
 π[i] ← NIL
 end for

 d[1] ← 0
 for i = n downto 1 do
 u ← MinHeap[1]
 MinHeap[1] ← MinHeap(n)
 WhereInHeap[MinHeap[1]] ← SiftDown(MinHeap,1,n-1,d)
 for each v ∈ adj[u] do
 if v ∈ outside and W[u,v] < d[v] then
 d[v] ← W[u,v]
 π[v] ← u
 WhereInHeap[v] ← SiftUp(MinHeap,WhereInHeap[v],d)
 end if
 end for
 end for

end procedure