
CMSC 414 (Spring 2017) 1

Symmetric-key, Public-key Crypto and PKI
Due April 14 2017, 11:59PM

Parts of Sections 1, 2 and 4 are Copyright c© 2006 - 2011 Wenliang Du, Syracuse University.
The development of this document is/was funded by three grants from the US National Science Foun-
dation: Awards No. 0231122 and 0618680 from TUES/CCLI and Award No. 1017771 from Trust-
worthy Computing. Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation. A copy of the license can be found at http://www.gnu.org/licenses/fdl.html.

1 Overview

The overall learning objective of this lab is to get familiar with the concepts of symmetric-key
encryption, hashing, and Public-Key Infrastructure (PKI). You will be getting first-hand experience
with using the OpenSSL commandline tool and library to encrypt/decrypt messages under different
encryption modes, digital signature, public-key certificate, certificate authority and to construct
message digests with hash functions.

The tasks are set up in such a way that you not only gain experience with the use of these various
mechanisms, but also with their properties. You are encouraged to think about what these tools
are doing, and why you get the results you get. Some tasks ask you to write up these observations.

You will be using the same VM that you used for the previous projects. Make this a habit:
standards, interfaces, requirements, and recommended uses change over time.

2 Symmetric key encryption and decryption

2.1 Task 1: Encryption using different ciphers and modes

In this task, we will play with various encryption algorithms and modes. You can use the following
openssl enc command to encrypt/decrypt a file. To see the manuals, and to see the various cipher
modes that OpenSSL supports, you can type man openssl and man enc.

% openssl enc ciphertype -e -in plain.txt -out cipher.bin \

-K 00112233445566778899aabbccddeeff \

-iv 0102030405060708

Replace the ciphertype with a specific cipher type, such as -aes-128-cbc, -aes-128-cfb,
-bf-cbc, etc. In this task, you should try at least 3 different ciphers and three different modes.
We include some common options for the openssl enc command in the following:

-in <file> input file

-out <file> output file

-e encrypt

-d decrypt

-K/-iv key/iv in hex is the next argument

-[pP] print the iv/key (then exit if -P)

CMSC 414 (Spring 2017) 2

However, you will very rarely be typing in the key and initialization vector yourself: that is
very prone to error, and is kind of a waste of time. Instead, we can use OpenSSL itself to help us
generate random symmetric keys. Really, all we want from a symmetric key is that it be the right
size and that it be random, so we generate them with OpenSSL’s rand command:

% openssl rand -base64 16 > symm_key

This will generate a 16 byte (128 bit) random value in base 64 encoding. We can use this to
encrypt as follows:

% openssl enc ciphertype -e -in plain.txt -out cipher.bin \

-pass file:symm_key -salt

Note that the key we generated, symm key, is being used instead of specifying the key by hand.
Strictly speaking, we will not use this as our key, but rather as a sort of “password” that will be
used to help generate the key. To see this, you can attach the -P option to view the key that is
actually being used. In any event, decryption also uses the same -pass file:symm key argument
(it does not need the -salt argument — technically, neither does encryption, as it is the default,
but this is just to reinforce that you should never use no salt).

Submission: Please encrypt a file containing your DID by using the openssl command and a
randomly generated key file as shown in the example commands. Name the key file task1.key.
Use AES-256 in CBC mode for the encryption. Submit task1.bin and task1.key.

2.2 Task 2: ECB vs. CBC

The file terps.bmp contains a simple picture. We would like to encrypt this picture, so people
without the encryption keys cannot know what is in the picture. Please encrypt the file using the
ECB (Electronic Code Book) and CBC (Cipher Block Chaining) modes by using a pass file as
described in Section 2.1, and then do the following:

1. Let us treat the encrypted picture as a picture, and use a picture viewing software to display
it. However, for a .bmp file, the first set bytes contain header information about the picture.
We have to set the header correctly so that the encrypted file can be treated as a legitimate
.bmp file in order for us to view it. We have provided a script (make bmp.py) that you can
use to make your encrypted binary a viewable bmp image. You can use the command:

% python make_bmp.py terps.bmp your_encrypted_file.bin \

-o terps-enc-{cbc,ecb}.bmp

The python script has a dependency argparse which can be downloaded at https://pypi.
python.org/pypi/argparse

2. Display the encrypted picture using any picture viewing software.

Submission: Please submit the encrypted versions of the image terps-enc-cbc.bmp (for CBC)
and terps-enc-ecb.bmp (for ECB). Along with the images please include task2.txt containing:

https://pypi.python.org/pypi/argparse
https://pypi.python.org/pypi/argparse

CMSC 414 (Spring 2017) 3

1. A description of what the encrypted images look like.

2. Why is there a difference between the two?

3. What if any useful data can you learn by just looking at either picture?

2.3 Task 3: Encryption using the Data Encryption Standard (DES)

In this task you will compute the output of the first round of DES with the input and key being
your Directory ID. If your DID is less than 8 characters long, pad it with ASCII NULLs or if it is
more than 8 characters, truncate it to 8. Please show all work.

Documentation for DES can be found here: http://csrc.nist.gov/publications/fips/fips46-3/
fips46-3.pdf

Another resource is available here: http://page.math.tu-berlin.de/~kant/teaching/hess/

krypto-ws2006/des.htm

Example input and key: ngrodrig

ngrodrig: 01101110 01100111 01110010 01101111 01100100 01110010 01101001 01100111

Show all steps in the encryption round. You should show these steps in particular:

• Initial permutation

• Key generation:

– C0 and D0

– Left shift operations on C0 and D0

– Key K1

• L0 and R0

• Mangler function:

– K1 ⊕Rexpanded

– S-Box output

– Permutation after S-Box (call it PS)

• L0 ⊕ PS

• Final 64 bit output (L1R1)

Note: DES is insecure due to its short key length. This exercise is only meant to introduce you
to the working of the algorithm. For most practical purposes, AES with either 128-bit or 256-bit
keys is the preferred cipher.

Submission: Please submit a file called task3.[pdf/txt]. You may show your work on a piece
of paper and scan it for submission (task3.pdf). If you prefer to type your answer, please submit
task3.txt or task3.pdf (if you typeset it).

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://page.math.tu-berlin.de/~kant/teaching/hess/krypto-ws2006/des.htm
http://page.math.tu-berlin.de/~kant/teaching/hess/krypto-ws2006/des.htm

CMSC 414 (Spring 2017) 4

3 Task 4: Hashing

In this task, we give you a list of hashed passwords encoded in base64 encoding. Your task is to
crack as many passwords as you can. There are 100 salted and peppered passwords hashed using
the SHA3-256 hash algorithm. The salt and pepper used are CMSC414 and Spring17 respectively.
You will use password dictionaries that either you create or obtain online to crack these passwords.

Hint: You may have to use multiple password dictionaries to crack all passwords.

Example password: abcd

• Adding the salt at the front and pepper at the end gives us CMSC414abcdSpring17.

• Hashing this value using SHA3-256 and representing the digest in hex gives us

2f032af8cbbfba507e47d99a53771c6d0bb8942ada1258661451e734ab5dba80

• Encoding the hash digest (not the hex representation) using base64 encoding gives us

LwMq+Mu/ulB+R9maU3ccbQu4lCraElhmFFHnNKtduoA=

The file hashes.txt contains 100 hashed passwords. Write a program in either Java, Python or
C to crack the passwords. The input to your program must be a password dictionary, and output
should be cracked.txt with the hashes replaced by the actual corresponding passwords. If you
are not able to crack a specific password, leave the hash for that password in the output file as is.
To get full credit for this task, you only need to crack 90 out of the 100 passwords.

Extra credit (+5 points): Crack all 100 passwords.

Your program (name it Task4.[java/py/c]) will be run as

% ./Task4 <pass_dictionary.txt>

Submission:

• Your program: Task4.[java/py/c]

• The output of running your program (i.e. the file with the cracked passwords): cracked.txt.

• You are not required to submit a password dictionary. We will check your code against our
password dictionary for correctness.

4 PKI Tasks

4.1 Task 5: Become a Certificate Authority (CA)

A Certificate Authority (CA) is a trusted entity that issues digital certificates. The digital certificate
certifies the ownership of a public key by the named subject of the certificate. A number of

CMSC 414 (Spring 2017) 5

commercial CAs are treated as root CAs; VeriSign is the largest CA at the time of writing. Users
who want to get digital certificates issued by the commercial CAs need to pay those CAs.

In this lab, we need to create digital certificates, but we are not going to pay any commercial
CA. We will become a root CA ourselves, and then use this CA to issue certificate for others
(e.g. servers). In this task, we will make ourselves a root CA, and generate a certificate for this
CA. Unlike other certificates, which are usually signed by another CA, the root CA’s certificates
are self-signed. Root CA’s certificates are usually pre-loaded into most operating systems, web
browsers, and other software that rely on PKI. Root CA’s certificates are unconditionally trusted.

The Configuration File openssl.conf. In order to use OpenSSL to create certificates, you have
to have a configuration file. The configuration file usually has an extension .cnf. It is used by three
OpenSSL commands: ca, req and x509. The manual page of openssl.conf can be found using
Google search. You can also get a copy of the configuration file from /usr/lib/ssl/openssl.cnf.
After copying this file into your current directory, you need to create several sub-directories as
specified in the configuration file (look at the [CA default] section):

dir = ./demoCA # Where everything is kept

certs = $dir/certs # Where the issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept

new_certs_dir = $dir/newcerts # default place for new certs.

database = $dir/index.txt # database index file.

serial = $dir/serial # The current serial number

For the index.txt file, simply create an empty file. For the serial file, put a single number
in string format (e.g. 1000) in the file. Once you have set up the configuration file openssl.cnf,
you can create and issue certificates.

Certificate Authority (CA). As we described before, we need to generate a self-signed certifi-
cate for our CA. This means that this CA is totally trusted, and its certificate will serve as the root
certificate. You can run the following command to generate the self-signed certificate for the CA:

$ openssl req -new -x509 -keyout ca.key -out ca.crt -config openssl.cnf

You will be prompted for information and a password. Do not lose this password, because you
will have to type the passphrase each time you want to use this CA to sign certificates for others.
You will also be asked to fill in some information, such as the Country Name, Common Name, etc.
The output of the command are stored in two files: ca.key and ca.crt. The file ca.key contains
the CA’s private key, while ca.crt contains the public-key certificate.

4.2 Task 6: Create a Certificate for PKILabServer.com

Now, we become a root CA, we are ready to sign digital certificates for our customers. Our first
customer is a company called PKILabServer.com. For this company to get a digital certificate from
a CA, it needs to go through three steps.

/usr/lib/ssl/openssl.cnf

CMSC 414 (Spring 2017) 6

Step 1: Generate public/private key pair. The company needs to first create its own pub-
lic/private key pair. We can run the following command to generate an RSA key pair (both private
and public keys). You will also be required to provide a password to protect the keys. The keys
will be stored in the file server.key:

$ openssl genrsa -des3 -out server.key 1024

Step 2: Generate a Certificate Signing Request (CSR). Once the company has the key
file, it should generates a Certificate Signing Request (CSR). The CSR will be sent to the CA, who
will generate a certificate for the key (usually after ensuring that identity information in the CSR
matches with the server’s true identity). Please use PKILabServer.com as the common name of
the certificate request.

$ openssl req -new -key server.key -out server.csr -config openssl.cnf

Step 3: Generating Certificates. The CSR file needs to have the CA’s signature to form a
certificate. In the real world, the CSR files are usually sent to a trusted CA for their signature. In
this lab, we will use our own trusted CA to generate certificates:

$ openssl ca -in server.csr -out server.crt -cert ca.crt -keyfile ca.key \

-config openssl.cnf

If OpenSSL refuses to generate certificates, it is very likely that the names in your requests
do not match with those of CA. The matching rules are specified in the configuration file (look
at the [policy match] section). You can change the names of your requests to comply with the
policy, or you can change the policy. The configuration file also includes another policy (called
policy anything), which is less restrictive. You can choose that policy by changing the following
line:

"policy = policy_match" change to "policy = policy_anything".

4.3 Task 7: Use PKI for Web Sites

In this lab, we will explore how public-key certificates are used by web sites to secure web browsing.
First, we need to get our domain name. Let us use PKILabServer.com as our domain name. To
get our computers recognize this domain name, let us add the following entry to /etc/hosts; this
entry basically maps the domain name PKILabServer.com to our localhost (i.e., 127.0.0.1):

127.0.0.1 PKILabServer.com

Next, let us launch a simple web server with the certificate generated in the previous task.
OpenSSL allows us to start a simple web server using the s server command:

Combine the secret key and certificate into one file

% cp server.key server.pem

% cat server.crt >> server.pem

Launch the web server using server.pem

% openssl s_server -cert server.pem -www

CMSC 414 (Spring 2017) 7

Submit server.pem. By default, the server will listen on port 4433. You can alter that using the
-accept option. Now, you can access the server using the following URL: https://PKILabServer.
com:4433/. Most likely, you will get an error message from the browser. In Firefox, you will
see a message like the following: “pkilabserver.com:4433 uses an invalid security certificate. The
certificate is not trusted because the issuer certificate is unknown”. Submit a screenshot with Firefox
showing this message in ss71.png.

Had this certificate been assigned by VeriSign, we will not have such an error message, because
VeriSign’s certificate is very likely preloaded into Firefox’s certificate repository already. Unfortu-
nately, the certificate of PKILabServer.com is signed by our own CA (i.e., using ca.crt), and this
CA is not recognized by Firefox. There are two ways to get Firefox to accept our CA’s self-signed
certificate.

• We can request Mozilla to include our CA’s certificate in its Firefox software, so everybody
using Firefox can recognize our CA. This is how the real CAs, such as VeriSign, get their
certificates into Firefox. Unfortunately, our own CA does not have a large enough market for
Mozilla to include our certificate, so we will not pursue this direction.

• Load ca.crt into Firefox: We can manually add our CA’s certificate to the Firefox browser
by clicking the following menu sequence:

Edit -> Preference -> Advanced -> View Certificates.

You will see a list of certificates that are already accepted by Firefox. From here, we can
“import” our own certifcate. Please import ca.crt, and select the following option: “Trust
this CA to identify web sites”. You will see that our CA’s certificate is now in Firefox’s list
of the accepted certificates.

Now, point the browser to https://PKILabServer.com:4433. Submit a screenshot with Firefox
showing this message in ss72.png. Please describe and explain your observations. Please also do
the following tasks:

1. Modify a single byte of server.pem in the certificate section (between ---BEGIN CERTIFICATE---

and ---END CERTIFICATE---), and restart the server, and reload the URL. What do you ob-
serve? Make sure you restore the original server.pem afterward.

2. Since PKILabServer.com points to the localhost, if we use https://localhost:4433 instead,
we will be connecting to the same web server. Please do so, describe and explain your
observations.

Submission instructions: Submit your responses to the above questions in task7.txt. As
mentioned earlier, you also need to submit server.pem, ss71.png and ss72.png.

5 Task 8: Bitcoin

Watch Khan Academy’s lectures on Bitcoin here:
https://www.khanacademy.org/economics-finance-domain/core-finance/money-and-banking#

bitcoin.

For an optional additional resource you may use this ebook:
https://umaryland.on.worldcat.org/search?databaseList=&queryString=understanding+bitcoin&

https://PKILabServer.com:4433/
https://PKILabServer.com:4433/
https://PKILabServer.com:4433
PKILabServer.com
https://localhost:4433
https://www.khanacademy.org/economics-finance-domain/core-finance/money-and-banking#bitcoin
https://www.khanacademy.org/economics-finance-domain/core-finance/money-and-banking#bitcoin
https://umaryland.on.worldcat.org/search?databaseList=&queryString=understanding+bitcoin&umdlib=
https://umaryland.on.worldcat.org/search?databaseList=&queryString=understanding+bitcoin&umdlib=

CMSC 414 (Spring 2017) 8

umdlib=

Answer the following questions

1. What is Bitcoin?

2. Explain how Bitcoin uses symmetric encryption, hashing and asymmetric encryption.

Extra credit (+5 points): Explain an attack against Bitcoin.

Submission instructions: Submit a text file called task8.txt with your answers.

6 Summary of Submitted Files

Make a gzipped tarball named <firstname>.<lastname>.tgz that includes the following files:

• task1a.bin

• task1.key

• task1b.bin

• task2.txt

• terps-enc-ecb.bmp

• terps-enc-cbc.bmp

• task3.[pdf/txt]

• Task4.[java/py/c]

• cracked.txt

• server.pem

• ss71.png

• ss72.png

• task7.txt

• task8.txt

So Jo Smith would do:

tar cvfz jo.smith.tgz task1b.bin task2.txt ... task7.txt

and submit jo.smith.tgz via the submit server.

Note: Only the latest submission counts.

7 Points for individual tasks

https://umaryland.on.worldcat.org/search?databaseList=&queryString=understanding+bitcoin&umdlib=
https://umaryland.on.worldcat.org/search?databaseList=&queryString=understanding+bitcoin&umdlib=

CMSC 414 (Spring 2017) 9

Problem Points

1 10
2 10
3 25
4 25

5,6,7 25
8 15

Total 110

	Overview
	Symmetric key encryption and decryption
	Task 1: Encryption using different ciphers and modes
	Task 2: ECB vs. CBC
	Task 3: Encryption using the Data Encryption Standard (DES)

	Task 4: Hashing
	PKI Tasks
	Task 5: Become a Certificate Authority (CA)
	Task 6: Create a Certificate for PKILabServer.com
	Task 7: Use PKI for Web Sites

	Task 8: Bitcoin
	Summary of Submitted Files
	Points for individual tasks

