
University of Maryland
CMSC414 — Computer and Network Security (Spring 2017)
Instructor: Udaya Shankar (project originally created by Jonathan Katz)

Project 4: ATM Design and Implementation

Due dates
May 5, 11:59:59 PM (Part 1)
May 12, 11:59:59 PM (Part 2)

In this project, you will design and implement a prototype ATM/Bank system. Then
you will get a chance to (try to) attack other teams’ designs! We have tried to make these
instructions as explicit as possible. Read them carefully; if anything is unclear, please ask
for clarification well in advance.

Overview

1. You may work in a team of two people or work alone for this project. Regardless of
whether you work on a team, you should submit a file at the root of your submitted
files named “team.txt” with the details about your team members (please see the
“Part 1 Deliverables” section for details about this file).

2. You will design and implement three programs: an ATM, a bank, and an init program
that initializes state for them. (You may also find it useful to create various auxiliary
files defining classes and functionalities that can be used by the ATM and Bank
classes.)

3. You will be provided with stub code for the ATM, the bank, and a router that will
route messages between the ATM and the bank. The stub code will allow the ATM
and the router to communicate with each other, and the router and the bank to
communicate with each other. The router will be configured to simply pass messages
back-and-forth between the ATM and the bank. (Looking ahead, the router will
provide a way to carry out passive or active attacks on the “communication channel”
between the bank and the ATM.)

4. You will design a protocol allowing a user to withdraw money from the ATM. Re-
quirements include:

• The ATM card of user XXX will be represented by a file called XXX.card.

• The user’s PIN must be a 4-digit number.

• User balances will be maintained by the bank, not by the ATM.

• You need not support multiple ATMs connecting to the bank simultaneously.

• You also do not need to maintain state between restarting the bank (e.g., all
user balances can be maintained in memory).

1

Of course, as part of the design process you will want to consider security. . .

5. You will then implement your protocol. Most of your work should involve the ATM,
bank, and init programs, with no (or absolutely minimal) modifications to the router.

1 Part 1—Basic Functionality

This section describes the various programs you will need to write for this project. We have
provided stub code for much of it, along with some helper utility code (a hash table and
a list). You are welcome to use these, or to write your own, but the way that the code
communicates (the ATM and bank route their messages through the router) must remain
the same.

Also, in this section, we describe outputs for the program: make sure that these match
exactly (the outputs do not have periods at the end, for instance) so that we can use
automatic graders. For ease of grading, your project should run on the VM used in the
other projects. It is highly recommended that you perform all development on the VM to
avoid issues from using different operating systems.

Building the programs: what and how

From your submission directory, there should be a Makefile such that when we run make it
creates the following programs (before running make for the first time, run mkdir bin to
initialize the bin directory to contain the binaries):

• bin/atm

• bin/bank

• bin/init

• bin/router

The atm, bank, and router programs must be implemented in C. init can be a script
or C program. The stub code that we provide contains the networking operations you will
need. The router, bank, and ATM all run on different ports on localhost (so you need
not even be connected to the Internet for this to work).

Your submissions must build with stack guard turned off (-fno-stack-protector —
as already specified in the Makefile provided. As you all know, this is bad practice, and you
should not do this outside of this class! But it will require you to be all the more on your
toes—and should make the break-it phase of the project even funner.

Invoking the programs

The init and router programs can be run in either order, but both must be run before
bank, which in turn must be run before atm. The order of these will be clear from what
they create. Please note that in the code snippets, we use the % character to designate the
shell prompt.

2

1.1 The init program

The init program takes one command line argument, as follows:

% <path1>/init <path2>/<init-filename>

This program creates two files: <path2>/<init-fname>.bank and <path2>/<init-fname>.atm

— the point of the paths here being that the program should not be creating the files in a
hard-coded directory, but rather the user should be able to specify where they go.

File contents: The contents of these files can be whatever you want. In fact, their
contents are an important part of your protocol’s design and security. When you design
them, keep in mind:

• When the bank program is started, we pass it the <init-fname>.bank file, and when
the atm program is started, we pass it the <init-fname>.atm file.

• Only the bank can access the .bank file, and only the ATM can access the .atm file—
they cannot access one another’s. This will be enforced during testing by creating
two users “bank” and “atm” and changing the access of these files so only the bank
can access the bank files and vice versa.

• Attackers are not allowed to access either of these files.

Behavior of the init program:

• If the user fails to provide precisely one argument, then print “Usage: init <filename>”
and return value 62.

• Otherwise, if either <path2>/<init-filename>.atm or <path2>/<init-filename>.bank
already exist, print “Error: one of the files already exists” and return value
63 without writing over or creating either file.

• Otherwise, if for any other reason the program fails, print “Error creating initialization

files” and return value 64 (you do not need to delete or revert any files you may
have created).

• Otherwise, if successful, print “Successfully initialized bank state” and return
value 0.

1.2 The bank program

The bank program takes one command line argument, as follows:

% <path1>/bank <path2>/<init-filename>.bank

That is, it is called with a <init-filename>.bank that was created by the init pro-
gram. You can assume that it will NOT be called with any other file than one that was
created with your init program.

3

Behavior of the bank program:

• If <init-filename>.bank cannot be opened, print “Error opening bank initialization

file” and return value 64.

• Otherwise, present the bank prompt “BANK: ” and process bank commands, as de-
scribed below.

Bank commands:
The bank should support the following commands:

• create-user <user-name> <pin> <balance>

– Inputs:

∗ <user-name>: a name that can consist only of upper and lower case charac-
ters ([a-zA-Z]+). (Valid user names are at most 250 characters.)

∗ <pin>: a four-digit number [0-9][0-9][0-9][0-9]

∗ <balance>: a non-negative integer [0-9]+ at most what can be represented
with a int.

– Behavior:

∗ If the inputs to the command are invalid, then print “Usage: create-user

<user-name> <pin> <balance>” there should be no side effects in this case.

∗ Otherwise, if there is already a user with that (case-sensitive) name, then
print “Error: user <user-name> already exists” there should be no
side effects in this case.

∗ Otherwise, it should create a user named <user-name> in the bank with an
initial balance of $<balance> It should also create a file called <user-name>.card

in the current directory (if you run ./<path>/bank then it should create the
file in ., not in <path>). Like with the <init-filename> files, the contents
can be whatever you want: it’s part of your design.

· If it is unable to create the file, then it should print “Error creating

card file for user <user-name>” and roll back any changes the bank
may have made.

· Otherwise, if it successfully creates the file, then it should print “Created
user <user-name>”

∗ In any of the above cases, it should return the user back to the bank prompt
for more commands.

∗ Note: Your protocol cannot modify card files after creating them.

∗ Note: The bank should not have any user accounts pre-established: these
will be created at run-time with a create-user command.

• deposit <user-name> <amt>

– Inputs:

4

∗ <user-name>: a name that can consist only of upper and lower case charac-
ters ([a-zA-Z]+). (Valid user names are at most 250 characters.)

∗ <amt>: a non-negative integer [0-9]+ at most what can be represented with
a int.

– Behavior:

∗ If the inputs to the command are invalid, then print “Usage: deposit

<user-name> <amt>”: there should be no side effects in this case.

∗ Otherwise, if there is no such user, then print “No such user”: there should
be no side effects in this case.

∗ Otherwise, if the <amt> would cause integer overflow, then print “Too rich

for this program”: there should be no side effects in this case.

∗ Otherwise, the command will add $amt to the account of user-name. After
successful completion of this command, this should print “$amt added to

<user-name>’s account”

• balance <user-name>

– Inputs:

∗ <user-name>: a name that can consist only of upper and lower case charac-
ters ([a-zA-Z]+). (Valid user names are at most 250 characters.)

– Behavior:

∗ If the inputs to the command are invalid, then print “Usage: balance

<user-name>”

∗ Otherwise, if there is no such user, then print “No such user”

∗ Otherwise, if <user-name>’s current balance is <balance>, then the com-
mand will print “$<balance>”

∗ No matter the input, this command should have no side effects (beyond
printing).

• Any other commands are invalid (note that withdrawals are not supported at the
bank), and should result in printing “Invalid command”

Example transcript

Here is an example transcript of using the bank: suppose that no users exist yet.

BANK: balance Alice

No such user

BANK: create-user Alice 1234 100

Created user Alice

BANK: deposit Alice 2

$2 added to Alice’s account

5

BANK: balance Alice

$102

BANK: ...

1.3 The atm program

The atm program takes one command line argument, as follows:

% <path1>/atm <path2>/<init-filename>.atm

That is, it is called with a <init-filename>.atm that was created by the init program.
You can assume that it will NOT be called with any other file than one that was created
with your init program.

Behavior of the atm program:

• Similar to the bank, if <init-filename>.atm cannot be opened, print “Error opening

ATM initialization file” and return value 64.

• Otherwise, present the bank prompt “ATM: ” and process ATM commands, as de-
scribed below.

ATM commands:
The ATM should support the following commands:

• begin-session <user-name>

This command is supposed to represent <user-name> walking up to the ATM and
inserting his or her ATM card. It should then read from <user-name>.card, and
prompt for a PIN. If the correct PIN is entered, print “Authorized” and then al-
low the user to execute the other three ATM commands (balance, withdraw, and
end-session). Otherwise, print “Not authorized” and continue listening for fur-
ther begin-session commands. More details here:

– Inputs:

∗ <user-name>: a name that can consist only of upper and lower case charac-
ters ([a-zA-Z]+). (Valid user names are at most 250 characters.)

– Behavior:

∗ If there is a user already logged in, then print “A user is already logged

in”

∗ Otherwise, if the inputs to the command are invalid, then print “Usage:
begin-session <user-name>”: there should be no side effects in this case.

∗ Otherwise, if there is no such user registered with the bank, then print “No
such user”

6

∗ Otherwise, if your protocol uses the card files, then it should look for <user-name>.card
in the current directory (e.g., if you run ./<path>/atm then it should look
for <user-name>.card in ., not in <path>). If it is unable to open the file,
then it should print “Unable to access <user-name>’s card”

∗ Otherwise (if there is no error accessing the card file), then the program
should prompt the user for his or her pin by printing “PIN? ”

∗ The user should then enter a <pin> consisting of a four-digit number [0-9][0-
9][0-9][0-9].

∗ If the pin entered is invalid (not formatted correctly) or if it is unable to
authenticate the user, then the program should print “Not authorized”
and return to the ATM prompt (“ATM: ”).

∗ Otherwise, it should print “Authorized” and enter the authorized atm
prompt (”ATM (<user-name>): ”).

• withdraw <amt>

– Inputs:

∗ <amt>: a non-negative integer [0-9]+ at most what can be represented with
a int.

– Behavior:

∗ If no user is logged in, then print “No user logged in”

∗ Otherwise, if the inputs to the command are invalid, then print “Usage:
withdraw <amt>”

∗ Otherwise, if the user has insufficient funds, then print “Insufficient
funds”

∗ Otherwise, if the user has sufficient funds, then print “$<amt> dispensed”
and those funds should be reduced from the logged-in user’s balance.

∗ If a user was logged in, then that user should stay logged in after this com-
mand.

• balance

– Behavior:

∗ If no user is logged in, then print “No user logged in”

∗ Otherwise, if the inputs to the command are invalid, then print “Usage:
balance”

∗ Otherwise, if the user’s current balance is <balance> then print “$<balance>”

∗ If a user was logged in, then that user should stay logged in after this com-
mand.

• end-session

This command represents the user terminating his or her session and logging out of
the ATM.

7

– Behavior:

∗ If no user is logged in, then print “No user logged in”

∗ Otherwise, terminate the current session and print “User logged out”. The
ATM should then continue listening for further begin-session commands.

• Any other commands are invalid (note that deposits are not supported at the ATM),
and should result in printing “Invalid command”

• Note: The ATM should support an unlimited number of withdraw and balance

commands per session. Deposits at an ATM are not supported.

Example transcript

Here is an example transcript, assuming Alice’s balance is $100 (and this balance is not
modified at the bank during this execution), that the file Alice.card is present, and that
Alice’s PIN is 1234 (continuing the example from the bank program). Note the prompts,
which change as a user logs in:

ATM: begin-session Aliceeee

No such user

ATM: begin-session Alice

PIN? 1234

Authorized

ATM (Alice): balance

$100

ATM (Alice): withdraw 1

$1 dispensed

ATM (Alice): balance

$99

ATM (Alice): end-session

User logged out

ATM: balance

No user logged in

ATM: ...

Threat model

Your protocol should be secure against an adversary who is not in possession of a user’s
ATM card, even if the adversary knows the user’s PIN. Similarly, it should be secure even

8

if the adversary has the user’s card, but does not know the user’s pin. The attacker is
also in control of a router on the path between the ATM and the bank, and can inspect,
modify, drop, and duplicate packets—as well as create wholly new packets—to both ATM
and bank.

However, we assume that the bank computer cannot be compromised, nor can the
memory on the ATM be examined. In particular, you do not need to defend against the
following: (1) Using code disassembly to recover secret keys, or (2) Attacks that require
restarting the bank, or (3) Attacks that involve inspecting the contents of the files created
by the init program: think of these like secret information that a bank operator inputs at
the bank server and when installing the ATM (though, again, the specific contents of these
files are purely up to you).

Part 1—Deliverables

Submit a tar file with your implementation (all of the .c and .h files that collectively
encompass your code, including any files we provided, even if you do not modify them),
along with a Makefile. Building all of your executables should require only running “make”.
We have provided an initial Makefile; modify this as necessary (or make your own).

In addition to the implementation, you must write a design document in which you:

1. Describe your overall protocol in sufficient detail for a reader to understand the secu-
rity mechanisms you put into place, without having to look at the source code. This
must include the format of the files you create (with the init and bank programs)
and the messages you send between ATM and bank.

2. List, one by one, the five specific attacks that you have considered and describe how
your protocol counters these threats. This is critical for how we will be grading this
part of the project (see Grading below). Please number each attack considered so
they are easy to identify.

3. You can also mention threats that you chose to ignore because they were unimportant,
as well as threats that were important but you were unable to address.

The design document should be saved as a PDF file and named “Design.pdf”. This
should be included at the root of your tar archive.

Finally, be sure you include a file named “team.txt” with one line for each team member
containing their name, directory id (not number) and email (in case of issues with building
the code). If you worked alone just submit a file with one line for yourself.

To create a tar archive containing the desired files simply execute the following command
within your project directory.

tar -czf firstname.lastname.tgz *

Which will copy all files and directories in the current directory into a new tar file called
“firstname.lastname.tgz” and place it in the current directory. If you have scrap files that
you do not want to include in the archive, you can instead specify any number of files and

9

directories instead of using * to grab everything. If you need to remake the tar archive,
make sure the old archive is not included in the new archive.

1.4 Before You Submit...

Before you submit, please take the following steps to ensure everything is packaged correctly.

1. Check to make sure your tar archive is named “firstname.lastname.tgz”, with either
group members name in place of “firstname” and “lastname”.

2. Copy your tar archive to some other directory (i.e. /tmp). Extract the archive and
ensure the archive contains team.txt, Design.pdf, and other files necessary to run.

3. Test that you can build your project using only make.

4. Test that you can start all the components and perform basic tasks.

Either group member can submit, but not both. We will only be grading the most
recent submission.

2 Part 2 — Attacking Other Teams’ Implementations

After submission, each team will be given the chance to attack another team’s implemen-
tation. Specifically, each team will be given the full submission of several other teams,
including all of the code and the design document.

In your attack, you may arbitrarily modify the router code and the *.card files. A
successful attack will be any attack that results in a net outflow of money to the attacker.
By way of illustration, examples of successful attacks would be (these are not exhaustive):

• Withdrawing any money from a user’s account without access to his or her card file
and/or PIN.

• Withdrawing more money from a user’s account than the balance permits.

• Remotely depositing money to a user’s account (i.e., without accessing the bank’s
command line interface).

• Learning a user’s balance without having access to his or her card file and/or PIN.

Deliverable: Submit a vulnerability analysis of the assigned implementations. This anal-
ysis should describe your attack(s), if any, at both a high level (so someone reading it can
understand what you did) as well as in sufficient detail to enable someone to replicate your
attack. You can also describe any vulnerabilities you were able to find but not exploit (due
to limitations of the project); e.g., an attack that would require multiple ATMs to connect
to the bank at once. If you were unable to find any attack, simply explain what types of
exploits you looked for. Your vulnerability analysis should begin with the name(s) of the
students whose protocol you are attacking, and a 1-paragraph summary of what attacks (if
any) you were able to find.

10

Submit your vulnerability analysis via the submit server. This, too, must be typeset
in a sane format (pdf or ps). In your analysis, please include the team numbers of whose
projects you are attacking.

You should also submit (via the submit server) any code you wrote to implement your
attack. This will likely include the modified router code, but could include any other utilities
you wrote as well. Make sure to provide details on how to use your program(s) as part of
your vulnerability analysis. Please include the same team.txt file as before and only have
one group member submit (not both).

3 Grading

Part 1 will be worth 100 points and will be graded as follows: 25% of the grade will be
based on automated tests that your submission achieves the basic functionality (e.g., proper
account balances, not permitting withdrawals with insufficient funds, etc.). The remaining
is based on your protocol’s ability to protect against attacks.

Each distinct attack and countermeasure you present in your design document is an
additional 15%. (“Distinct” here is pretty loose: it doesn’t mean that, e.g., all confidentiality
attacks are equivalent, but rather that the attacks are significantly different. For example,
if there is a vulnerability such that modifying a part of a packet to some number x causes
the user to withdraw $x instead of their intended amount, then exploiting that vulnerability
with x = $200 and x = $300 are fundamentally the same attack.) You must list the attacks
and countermeasures one-by-one in your document to make it clear for grading.

If your design document does not correspond to your implementation, you will be given
no credit—if you are not able to implement some feature that you think should be present,
feel free to describe it so long as you state clearly that it is not implemented; for well-
described attacks and designs without implementation, partial credit will be available.

Part 2 is worth 20 points. A successful attack (that is also described clearly in the vul-
nerability analysis) will automatically be awarded 20 points. Even if you are not able to
find a successful attack, you can still get points by (1) pointing out potential vulnerabili-
ties that you were not able to successfully exploit, and/or (2) writing a good vulnerability
analysis that outlines the exploits you looked for and argues why they are not present in
the implementation you were given to attack.

We reserve the right to award extra points for multiple attacks, or particularly clever
attacks, so be creative!

11

