
CMSC 414: Computer and Network Security

Spring 2017

Sections 0101 and 0201

A. Udaya Shankar

What is computer & network security

•Normally, we are concerned with correctness
• The software should achieve the desired behavior

• Security is a bit different:
• The software should prevent undesired behavior
•Key difference: adversary

What are “undesired” behaviors?
• Reveals info users wish to hide (confidentiality)

• Corporate secrets
• Private data; personally identifying information (PII)

• Modifies information or functionality (integrity)
• Destroys records
• Changes data in-flight (think “the telephone game”)
• Installs unwanted software (spambot, spyware, etc.)

• Denies access to a service (availability)
• Crashing a website for political reasons
• Denial of service attack
• Variant: fairness This is a subset

Can we make this precise?

•What does preventing undesired behavior mean

•Correctness of a program P:
• for any intended input, P produces desired output

•P is secure: for any input, P produces desired output
• if input unintended, P produces null/error output
• any input: any bit string applied at any input point

What are possible input points for P

• Input statements in P: read(), scanf(), . . .

•Compiler that translates P to an executable Q:

• Shell environment variables: PATH, . . .

• Libraries that are linked with Q

•OS that loads and runs Q
•protect Q’s address space from other processes

•Origin of compiler and OS, . . .

Why are attacks common?
• Because attacks derive from design flaws and/or

implementation bugs

• But all software has bugs: so what?

• A normal user never sees most bugs
• Post-deployment bugs are usually rare corner cases

• Too expensive to fix every bug
• Only fix what’s likely to affect normal users

Why are attacks common?

• Normal users avoid bugs/flaws

• Adversaries seek them out and try to exploit them

Attackers are not normal users

This extends beyond software:  
Attacks are possible even with perfect software

Why are attacks common?

And because a system is 
only as secure as its weakest link

Because it’s profitable

Crypto

• Fundamental to detecting invalid input strings
• invalid password, invalid executable, . . .

•Good crypto is based on sophisticated mathematics
•Don’t make up your own crypto

•Crypto by itself cannot overcome all attacks
• if Q’s address space is exposed, attacker can get key

In order to achieve security, we must:

Be able to eliminate bugs and design flaws  
and/or make them harder to exploit.

Be able to think like attackers.

Develop a foundation for deeply understanding  
the systems we use and build.

Widespread misuse of crypto

This is an encrypted image

In order to achieve security, we must:

Be able to eliminate bugs and design flaws  
and/or make them harder to exploit.

Be able to think like attackers.

Develop a foundation for deeply understanding  
the systems we use and build.

Widespread misuse of crypto

50% of Android apps that use crypto encrypt in this manner

This is an encrypted image

In order to achieve security, we must:

Be able to eliminate bugs and design flaws  
and/or make them harder to exploit.

Be able to think like attackers.

Develop a foundation for deeply understanding  
the systems we use and build.

Software Hardware Protocols
Users EconomicsLaw

Administrative

• Syllabus, resources, office hours, and all this on class page:
http://www.cs.umd.edu/class/spring2017/cmsc414

• People
• Me: A. Udaya Shankar (shankar@cs.umd.edu)

• TAs: Nishant Rodrigues Ashton Webster
Jacob Hammontree Stephan Kostreski

• Piazza

• Grades:
• Projects P1-P4: 50%

• 2 midterms: 15% each

• Final: 20%

http://www.cs.umd.edu/class/spring2017/cmsc414
mailto:shankar@cs.umd.edu

Read the syllabus!
•  Late policy!
•  Good-faith effort requirement!
•  Excused absences!
•  Academic integrity!

Michelle Mazurek, Fall 2016 24

Administrative
• None required

• Mostly in-class and papers posted on website

• Recommended texts, if you are so inclined
• “Security in Computing”, Pfleeger & Pfleger
• “Introduction to Computer Security”, Goodrich & Tamassia
• “Security Engineering”, Ross Anderson

- Free online: http://www.cl.cam.ac.uk/~rja14/book.html

Textbooks

http://www.cl.cam.ac.uk/~rja14/book.html

Administrative

• The best way to learn is to reinforce

• Lots of security resources (something is always breaking).
• Krebs on security
• Bruce Schneier’s blog
• reddit.com/r/netsec
• Any other favorites? Let us know on Piazza

Outside reading

What’s in this course?

What’s in this course?
Software
Security How do we build software that is secure?

Memory safety
Malware

Web security
Static analysis

Design principles

What’s in this course?
Software
Security

Crypto What it is, and how to use it responsibly

A black-box approach to crypto
Designing protocols that use crypto
Authentication: proving who you are

Anonymity: hiding who you are

What’s in this course?
Software
Security

Crypto

How to build secure networked systems.

Attacks on TCP & DNS
Botnets

Underground spam economies

Network 
Security

What’s in this course?
Software
Security

Crypto

How to build secure networked systems.Network 
Security

How do we build software that is secure?

What it is, and how to use it responsibly.

Attacks and defenses across all of these

Ethics and legality
• You will be learning about (and implementing and

launching) attacks, many of which are in active use
today.

• This is not an invitation to use them without the
explicit written consent of all parties involved

• If you want to try something out, then let me know
and I will try to help create a safe environment

• This is not just a question of ethics; to do otherwise
would risk violating UMD policies and MD/USA laws

Prerequisite knowledge
• You should be reasonably proficient in C and Unix

• You should also be creative and resourceful (those
who try to attack your systems will be!)

• Otherwise, this course won’t require any prior
knowledge in networking or crypto

Trusting Trust

Is anything really “secure”?

Is anything really “secure”?
• Security requires context

• What is the threat model? What can the attacker do?
• What are the assets you seek to protect?
• Whom and what do you trust?

Is anything really “secure”?
• Security requires context

• What is the threat model? What can the attacker do?
• What are the assets you seek to protect?
• Whom and what do you trust?

• “Trust no one!”
• That’s the spirit!
• But how did you compile your code again?
• Who built your OS? Your hardware?…

Is anything really “secure”?
• Security requires context

• What is the threat model? What can the attacker do?
• What are the assets you seek to protect?
• Whom and what do you trust?

• “Trust no one!”
• That’s the spirit!
• But how did you compile your code again?
• Who built your OS? Your hardware?…

Required reading
“Reflections on Trusting Trust”

Ken Thompson

Case study: Heartbleed!
•  SSL is the main protocol for secure

(encrypted) online communication!

•  Heartbleed was a vulnerability in the most
popular SSL server!

Michelle Mazurek, Fall 2016 6

Michelle Mazurek, Fall 2016 7

https://xkcd.com/1354/!

Michelle Mazurek, Fall 2016 8

Michelle Mazurek, Fall 2016 9

Case study: Heartbleed!
•  SSL is the main protocol for secure

(encrypted) online communication!
•  Malformed packet allows you to see server

memory!
•  Passwords, keys, emails, visitor logs …..!

•  Fix: Don’t let the user tell you how much data
to send back!!
•  This is a design flaw!

Michelle Mazurek, Fall 2016 10

RSA breach, 2011!
1.  Flash exploit: When run by vulnerable Flash

player version, allows arbitrary code exec.!
2.  Excel embed: Runs automatically when

spreadsheet is opened.!
3.  Spear phishing: Spreadsheet attached to

email claiming to be from trusted party,
about relevant content!
•  Any “From” address can be forged!

Michelle Mazurek, Fall 2016 11

Next time

Buffer
overflows

By investigating

and other memory safety vulnerabilities

To prepare: you may want to brush up on your C

We will begin

Software
Security
our 1st section:

char buf[32];
unsigned *ptr = (unsigned*) (buf + 12);
*ptr += 0x1a;

Particularly if this seems foreign to you:

