
E-VOTING ANALYSIS!
case study!

Kohno et al., IEEE S&P 2004!
Halderman, 2016!



“Security mindset”!
•  Consider a complex system:!
•  Potential security threats?!
•  Hidden and explicit assumptions!
•  How to mitigate the risks?!
•  What are different players’ incentives?!
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1. Summarize the system!
1.  Pre-election: Poll worker 

loads “ballot definition” 
via e.g. USB!

2.  Voting: Voter obtains 
single-use smartcard, 
votes, vote stored 
encrypted, card canceled!

3.  Post-election: Votes 
decrypted and sent to 
tabulator, who counts !

!
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2. Identify goals/requirements!
•  Confidentiality: Can’t find 

out who I voted for!

•  Integrity: Can’t alter votes!

•  Availability: Can’t deny 
opportunity to vote!

•  Usability: General public 
can vote correctly without 
undue burden!
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What if the attacker can violate these, 
but you catch him/her? �



3. Identify adversaries/threats!
•  Poll worker, voter, outsider!

•  Display one vote / count a 
different vote!

•  Vote multiple times!

•  End election early (DOS)!

•  Tamper with stored data!

•  Reveal who voted for whom!

Michelle Mazurek, Fall 2016 38

o Mickey Mouse

o Donald Duck

o Minnie Mouse

2(b)	  

2(c)	  

3	  

Poll	  
worker	  

Voter	  

Tabulator	  

2(a)	  
Token	  

Encrypted	  
disk	  

1	  

BDF	  



Diebold Accuvote TS!
•  Used in 37 states! (in 2004)!
•  No cryptography protects smartcards, ballot 

definition file!
•  “Protected counter” in single, mutable file!
•  Pose as voting machine, send to tabulator!
•  Homebrew crypto protects vote logs!
•  Hardcoded key since at least 1998!

•  Read the paper for more!
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Follow-up!
•  More researchers confirmed these bugs and 

found others (got real hardware)!
•  State investigations: MD, CA, OH!
•  Similar problems from other manufacturers!
•  Sequoia AVC: designed 1980, used in NJ 2009!

•  “By the 2014 general election, 70% of 
American voters were casting ballots on 
paper”!
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Takeaways!
•  Adversarial thinking!
•  Whole-systems view!
•  Hardware, software, network, users, economics!

•  Only as strong as weakest link!
•  Break into building vs. sniff unencrypted traffic!
•  You have to be right always, adversary once!

•  Never homebrew crypto!!
•  Security through obscurity DOESN’T WORK!!
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This time

• History 

• Memory layouts 

• Buffer overflow fundamentals

Buffer
overflows

By investigating

and other memory safety vulnerabilities

We  will  begin

Software
Security
our 1st section:



screensaver --prompt=“Don’t unlock plz”

Don't unlock plz

press ctrl-c to logout
Locked by dml



screensaver --prompt=“Don’t unlock pretty plz”
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screensaver --prompt=“Don’t unlock plz␠␠␠\  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screensaver —prompt=“Under maintenance;\  
Do not interrupt␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠\  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Under maintenance;
Do not interrupt

Locked by dml
press ctrl-c to logout
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Most (interesting) software takes input

Target 
host 

(victim)

Direct user interaction 
• command line interface (stdin) 
• user opens a document

Network communication 
• emails 
• various protocols

Sensing the outside world 
• QR codes (to link w/ malware) 
• sound recordings

Third-party libraries

Goal: Correct operation despite malicious inputs

Future code updates
Others…



What is a buffer overflow?
• A low-level bug, typically in C/C++ 

• Significant security implications! 

• If accidentally triggered, causes a crash 

• If maliciously triggered, can be much worse 
• Steal private info 
• Corrupt important info 
• Run arbitrary code



Why study them?
• Buffer overflows are still relevant today 

• C and C++ are still popular 
• Buffer overflows still occur with regularity 

• They have a long history 
• Many different approaches developed to defend against 

them, and bugs like them 

• They share common features with other bugs we will study 
• In how the attack works
• In how to defend against it



C and C++ still very popular

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages



Critical systems in C/C++
• Most OS kernels and utilities 

• fingerd, X windows server, shell 

• Many high-performance servers
• Microsoft IIS, Apache httpd, nginx 
• Microsoft SQL server, MySQL, redis, memcached 

• Many embedded systems
• Mars rover, industrial control systems, 

automobiles, healthcare devices

A successful attack on these systems is 
particularly dangerous!



We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 1999 2000 2001 2002 2003

• Morris worm 
• Propagated across machines (too aggressively, thanks to a bug) 
• One way it propagated was a buffer overflow attack against a 

vulnerable version of fingerd on VAXes 
• Sent a special string to the finger daemon, which caused it to 

execute code that created a new worm copy 
• Didn’t check OS: caused Suns running BSD to crash 

• End result: $10-100M in damages, probation, community service

(Robert Morris is now a professor at MIT)



We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 1999 2000 2001 2002 2003

• CodeRed 
• Exploited an overflow in the MS-IIS server 
• 300,000 machines infected in 14 hours



We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 1999 2000 2001 2002 2003

• SQL Slammer 
• Exploited an overflow in the MS-SQL server 
• 75,000 machines infected in 10 minutes



We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 2008 2009 2010 2011 2012

• Conficker worm 
• Exploited an overflow in Windows RPC 
• ~10 million machines infected



We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 2008 2009 2010 2011 2012

• Stuxnet 
• Exploited several overflows nobody had at the time known 

about (“zero-day”) 
• Windows print spooler service 
• Windows LNK shortcut display 
• Windows task scheduler 

• Also exploited the same Windows RPC overflow as Conficker 
• Impact: legitimized cyber warfare (more on this later)



We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 2008 2009 2010 2011 2012

• Flame 
• Same print spooler and LNK overflows as Stuxnet 
• Cyber-espionage virus





GHOST: glibc vulnerability introduced in 2000,  
only just announced last year



syslogd bug in Mac OS X & iOS
• syslog: message logging infrastructure 

• Useful: one process issues the log messages, 
syslogd handles storing/disseminating them
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Want this many int’s

How many bytes should global.lockdown_session_fds be?

Takes bytes as 2nd arg

Array of int’s

global.lockdown_session_count + 1 * sizeof(int)



Want this many int’s

How many bytes should global.lockdown_session_fds be?

Takes bytes as 2nd arg

Array of int’s

(global.lockdown_session_count + 1) * sizeof(int)

global.lockdown_session_count + 1 * sizeof(int)



syslogd bug in Mac OS X & iOS
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syslogd handles storing/disseminating them
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syslogd bug in Mac OS X & iOS
• syslog: message logging infrastructure 

• Useful: one process issues the log messages, 
syslogd handles storing/disseminating them

Buffer 
too small

Writes 
beyond  

the buffer



Buffer overflows are prevalent
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https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-119


Buffer overflows are prevalent
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This class

Buffer overflows are impactful

MITRE's top-25 most dangerous software errors (from 2011)

http://cwe.mitre.org/top25/


Note about terminology
• We will use buffer overflow to mean any access of a 

buffer outside of its allotted bounds 
• An over-read, or an over-write 
• During iteration (“running off the end”) or by direct access  
• Could be to addresses that precede or follow the buffer 

• Other terms you may hear (more specific) 
• Underflow, over-read, out-of-bounds access, etc. 
• Some use buffer overflow only for writing off the end



Memory layout



All programs are stored in memory

0

4G 0xffffffff

0x00000000



All programs are stored in memory

0

4G 0xffffffff

0x00000000

The process’s view
of memory is that

it owns all of it

In reality, these are
virtual addresses;
the OS/CPU map
them to physical

addresses



The instructions themselves are in memory

Text

0

4G 0xffffffff

0x00000000

0x4bf mov %esp,%ebp

0x4be push %ebp

0x4c1 push %ecx
0x4c2 sub $0x224,%esp

...

...



Data’s location depends on how it’s created

Text

0

4G 0xffffffff

0x00000000

Uninit’d data static int x;

Init’d data static const int y=10;
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Data’s location depends on how it’s created

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;
Known at

compile time

Set when 
process starts



Data’s location depends on how it’s created

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;

Runtime

Known at
compile time

Set when 
process starts

Heap malloc(sizeof(long));

Stack
int f() {  
    int x;

 …



We are going to focus on runtime attacks

Stack and heap grow in opposite directions
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Stack
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We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack 
pointer

123

return

{
apportioned by the OS; 

managed in-process 
by malloc

Focusing on the stack for now



Stack layout when calling functions

• What do we do when we call a function? 
• What data need to be stored? 
• Where do they go? 

• How do we return from a function? 
• What data need to be restored? 
• Where do they come from?

Code examples
(see ~/UMD/examples/ in the VM)


