case study

E-VOTING ANALYSIS

Kohno et al., IEEE S&P 2004
Halderman, 2016

“Security mindset”

« Consider a complex system:
« Potential security threats”?
« Hidden and explicit assumptions
« How to mitigate the risks?
What are different players’ incentives?

Michelle Mazurek, Fall 2016

35

1. Summarize the system

. 2(a)
1. Pre-election: Poll worker

loads “ballot definition” /mﬁ : ~N\a
1 2(b)
XE'-‘_x

via e.g. USB

2. Voting: Voter obtains Poll Voter
single-use smartcard, worker Ja
votes, vote stored 8 Encrypted
encrypted, card canceled - o

3. Post-election: Votes V2
decrypted and sent to :
tabulator, who counts

Tabulator

Michelle Mazurek, Fall 2016 36

2. ldentify goals/requirements

2(a)

« Confidentiality: Can’t find
out who | voted for

* Integrity: Can't alter votes 4

worker

 Availability: Can’t deny

opportunity to vote 8 Encrypred
» Usability: General public 3

can vote correctly without :

undue b gm0

What if the attacker can violate these,
but you catch him/her?

Michelle Mazurek, Fall 2016 37

3. ldentify adversaries/threats

* Poll worker, voter, outsider

« Display one vote / count a
different vote

Vote multiple times
Encrypted
End election early (DOS) 8 gk

Tamper with stored data ;

P

 Reveal who voted for whom

Tabulator

Michelle Mazurek, Fall 2016 38

Diebold Accuvote TS

« Used in 37 states! (in 2004)

* No cryptography protects smartcards, ballot
definition file

* “Protected counter” in single, mutable file
* Pose as voting machine, send to tabulator

 Homebrew crypto protects vote logs
« Hardcoded key since at least 1998

* Read the paper for more

Michelle Mazurek, Fall 2016

39

Follow-up

* More researchers confirmed these bugs and
found others (got real hardware)
» State investigations: MD, CA, OH

« Similar problems from other manufacturers
« Sequoia AVC: designed 1980, used in NJ 2009

« "By the 2014 general election, 70% of
American voters were casting ballots on

paper”

Michelle Mazurek, Fall 2016

41

Takeaways

» Adversarial thinking
* \Whole-systems view
 Hardware, software, network, users, economics

* Only as strong as weakest link
» Break into building vs. sniff unencrypted traffic
* You have to be right always, adversary once

* Never homebrew crypto!
« Security through obscurity DOESN'T WORK!

Michelle Mazurek, Fall 2016

42

This time

We will begin By Investigating

our 1st section: B f'?

Software U

Security overflow.s
e History

 Memory layouts

o Buffer overflow fundamentals

screensaver --prompt=“Don’t unlock plz”

Don't unlock plz

Locked by dml
press ctrl-c to logout

screensaver --prompt=“Don’t unlock pretty plz”

Don't unlock pretty
plz

Locked by dml
press ctrl-c to logout

screensaver --prompt=“Don’t unlock plz:==\

)
SP SP

Don't unlock plz

Locked by dml

screensaver —prompt=“Under maintenance;\
DO no-t 'i-n-terlrlup-tsp SP\

)
SP SP

Under maintenance;
Do not interrupt

Most (interesting) software takes input

Direct user interaction

e command line interface (stdin)
® User opens a document

Most (interesting) software takes input

Direct user interaction

e command line interface (stdin)
® User opens a document

Network communication
e cmalls
e various protocols

Most (interesting) software takes input

Direct user interaction

e command line interface (stdin)
® User opens a document

Network communication
e cmalls
e various protocols

Sensing the outside world

e QR codes (to link w/ malware)
e sound recordings

Third-party libraries
Future code upaates
Others...

Goal: Correct operation despite malicious inputs

What is a buffer overtlow?

* Alow-level bug, typically in C/C++
e Significant security implications!

e |f accidentally triggered, causes a crash

 |f maliciously triggered, can be much worse
e Steal private info
e Corrupt important info
* Run arbitrary code

Why study them?

« Buffer overflows are still relevant today
 C and C++ are still popular
« Buffer overflows still occur with regularity

 They have a long history

 Many different approaches developed to defend against
them, and bugs like them

* They share common features with other bugs we will study
* |In how the attack works
* In how to defend against it

C and C++ still very popular

Language Rank Types Spectrum Ranking

x Dws e
2ea @07 EEN
sewon @ T WU
‘oo Dws BRI
.. o Ee
oo @Dy EEN
e @ B
masow ©0 BEN
orby @ W S

oo @ T S
http:/spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Critical systems in C/C++

 Most OS kernels and utilities
e fingerd, X windows server, shell

* Many high-performance servers
« Microsoft IS, Apache httpd, nginx

e Microsoft SQL server, I\/IySQL redis, memcached

—]
I\/Ia A successful attack on these systems IS

| particularly dangerous!
« Mars rover, industrial control systems,
automobiles, healthcare devices

We're going to focus on C

A breeding ground for buffer overflow attacks

1988 | 1999 2000 2001 2002 2003
I I I I I

* Morris worm
*+ Propagated across machines (too aggressively, thanks to a bug)

- One way it propagated was a buffer overflow attack against a
vulnerable version of £fingerd on VAXes

« Sent a special string to the finger daemon, which caused it to
execute code that created a new worm copy

- Didn’t check OS: caused Suns running BSD to crash
+ End result: $10-100M in damages, probation, community service

(Robert Morris is now a professor at MIT)

We're going to focus on C

A breeding ground for buffer overflow attacks

1988 1999 2000 | 2001 2002 2003
I I I I I

e CodeRed

+ Exploited an overflow in the MS-IIS server
+ 300,000 machines intected in 14 hours

We're going to focus on C

A breeding ground for buffer overflow attacks

1988 1999 2000 2001 2002 | 2003
I I I I I

e SQL Slammer
- Exploited an overflow in the MS-SQL server
« 75,000 machines infected in 10 minutes

We're going to focus on C

A breeding ground for buffer overflow attacks

1988 [2008 2009 2010 2011 2012
I I I

e Conficker worm
- Exploited an overflow in Windows RPC
« ~10 million machines infected

We're going to focus on C

A breeding ground for buffer overflow attacks

1988 2008 | 2009 2010 2011 2012
I I I I

e Stuxnet

- Exploited several overflows nobody had at the time known
about (“zero-day”)

- Windows
- Windows
« Windows

orint spooler service
| NK shortcut display

task scheduler

- Also exploited the same Windows RPC overflow as Conficker
Impact: legitimized cyber warfare (more on this later)

We're going to focus on C

A breeding ground for buffer overflow attacks

1988 2008 2009 (2010 2011 2012
I I I

* Flame
- Same print spooler and LNK overflows as Stuxnet
» Cyber-espionage virus

Slashdot * O

stories
23-Year-Old X11 Server Security Vulnerability Discovered
submissions
Posted by Unknown Lamer on WednesdagJanuary 08, 2014
popular from the stack-smashing-for-fun-and-profit dep
blog

An anonymous reader writes

"The recent report of X11/X.0rg security in bad shape rings more truth
today. The X.Org Foundation announced today that they've found a
book reviews X11 security issue that dates back t The issue is a possible
stack buffer overflow that could lead to privilege escalation to root and
affects all versions of the X Server back to X11R5. After the

idle vulnerability being in the code-base for 23 years, it was finally
uncovered via the automated cppcheck static analysis utility."

ask slashdot

games

yro
There's a scanf used when loading BDF fonts that can overflow using a

technology carefully crafted font. Watch out for those obsolete early-90s bitmap fonts.

Slashdot * O

stories
23-Year-Old X11 Server Security Vulnerability Discovered
submissions
Posted by Unknown Lamer on WednesdagJanuary 08, 2014
popular from the stack-smashing-for-fun-and-profit dep
blog

An anonymous reader writes

"The recent report of X11/X.0rg security in bad shape rings more truth
today. The X.Org Foundation announced today that they've found a
book reviews X11 security issue that dates back t The issue is a possible
stack buffer overflow that could lead to privilege escalation to root and
affects all versions of the X Server back to X11R5. After the

idle vulnerability being in the code-base for 23 years, it was finally
uncovered via the automated cppcheck static analysis utility."

ask slashdot

games

yro
There's a scanf used when loading BDF fonts that can overflow using a

technology carefully crafted font. Watch out for those obsolete early-90s bitmap fonts.

GHOST: glibc vulnerability introduced in 2000,
only Just announced last year

syslogd bug in Mac OS X & i0OS

e Syslog: message logging infrastructure

- Useful: one process issues the log messages,
syslogd handles storing/disseminating them

void
add_lockdown_session(int £d)

{
dispatch_once(&watch_init _once, “({
watch queue = dispatch queue create(fatch Queue”, NULL);

}):

dispatch_async(watch_queue, “{
if (global.lockdown_session_count == 0) global.lockdown_session_fds = NULL;

global.lockdown_session_fds = reallocf(global.lockdown session_fds,
global.lockdown session count + 1 * sizeof(int));

if (global.lockdown session fds == NULL)
{
asldebug(kdow =31 ' ') ;
global.lockdown session count = 0;
}
else
{
global.lockdown_session_fds[global.lockdown_ session_count++] = fd;
}

global.watchers active = direct watch count + global.lockdown session_ count;

})i:

syslogd bug in Mac OS X & i0OS

e Syslog: message logging infrastructure

- Useful: one process issues the log messages,
syslogd handles storing/disseminating them

void
add_lockdown_session(int £d)

{

dispatch_once(&watch_init _once, “({

watch queue = dispatch queue create('Dire: Queue , NULL);
})i
dispatch_async(watch_queue, “{
if (global.lockdown session count == 0) global.lockdown session_ fds = NULL;

global.lockdown_session_fds = reallocf(global.lockdown session_fds,
global.lockdown session count + 1 * sizeof(int));

if (global.lockdown session fds == NULL)
{
asldebug(add lockdown Af"""":‘:.' LOon: realloc fail ‘);
global.lockdown session count = 0;
}
else
{
global.lockdown_session_fds[global.lockdown_session_count++] = fd;
}

global.watchers active = direct watch_count + global.lockdown_ session_count;

})i:

global.lockdown session fds = reallocf(global.lockdown session fds,
global.lockdown session count + 1 * sizeof(int));

global.lockdown_session_ fds|= reallocf(global.lockdown session_fds,

global.lockdown_session_count + 1 * sizeof(int));

Array of int'’s

global.lockdown_session_fds‘= reallocf(global.lockdown_ session_ fds,

Iglobal lockdown session count]+ 1 * sizeof(int));

.) f
Array of ints Had this many int's

global.lockdown_session_fds‘= reallocf(global.lockdown_ session _£ds,

Iglobal lockdown session_count + 1]* sizeof(int));

L 1
Array of int’s Want this many int’s

akes byzles as 2nd arg

global.lockdown session_ fds

=Ireallocf(global.lockdown_session_fds,
global.lockdown_session_count + 1| * sizeof(int));

A Tf L I
ray of ints Want this many int’s

akes byzles as 2nd arg

global.lockdown session_ fds =Ireallocf(global.lockdown session_ fds,
global.lockdown session _count + 1

* sizeof(int));

A Tf =) ?
ray Of ints Want this many int'’s

How many bytes should global.lockdown session fds De”

akes byzles as 2nd arg

global.lockdown session_ fds =Ireallocf(global.lockdown session_ fds,
global.lockdown session count + 1

* sizeof(int));

Aray of 3ot ¥
ray of ints Want this many int’s

How many bytes should global.lockdown session fds De”

‘global.lockdown_session_count + 1 * sizeof(int)‘

akes byzles as 2nd arg

global.lockdown session_ fds =Ireallocf(global.lockdown_session_fds,

global.lockdown_session_count + lI* sizeof(int));

L 1
Array of int’s Want this many int’s

How many bytes should global.lockdown session fds De”

‘global.lockdown_session_count + 1 * sizeof(int)‘

‘(global.lockdown_session_count + 1) * sizeof(int)‘

syslogd bug in Mac OS X & i0OS

e Syslog: message logging infrastructure

- Useful: one process issues the log messages,
syslogd handles storing/disseminating them

void
add_lockdown_session(int £d)
{
dispatch once(&watch init once, “{
watch_queue = dispatch_queue_create('Direct Watch Queue”, NULL);
})i
dispatch async(watch queue, “{
if (global.lockdown session_count == 0) global.lockdown session_ fds = NULL;
EBLJffEEr global.lockdown_session_fds = reallocf(global.lockdown session_ fds,
tC)() ESFTTEi|| global.lockdown_session _count + 1 * sizeof(int));
if (global.lockdown session fds == NULL)
{
asldebug(“add lockdown session: : Y 3
global.lockdown session count = 0;
}
else
{
global.lockdown_session_fds[global.lockdown_session_count++] = fd;
}

global.watchers active = direct watch_count + global.lockdown_ session_count;

})i:

syslogd bug in Mac OS X & i0OS

e Syslog: message logging infrastructure

- Useful: one process issues the log messages,
syslogd handles storing/disseminating them

void
add_lockdown_session(int £d)
{
dispatch once(&watch init once, “{
watch_queue = dispatch_queue_create('Direct Watch Queue”, NULL);
})i
dispatch async(watch queue, “{
if (global.lockdown_session_count == 0) global.lockdown_session_fds = NULL;
E%LJffEEr global.lockdown_session_fds = reallocf(global.lockdown session_ fds,
tC)() SrT-]Ei” global.lockdown_session _count + 1 * sizeof(int));
if (global.lockdown session fds == NULL)
{
asldebug("add lockdown session: realloc failed\n");
global.lockdown session count = 0;
, }
Writes o=
{
t)Ea C)f\(j global.lockdown_session_fds[global.lockdown_session_count++] = fd;
}

the buffer

})i:

global.watchers active = direct watch_count + global.lockdown_ session_count;

Buffer overtlows are prevalent

Significant percent of all vulnerabilities

16

12

0
1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Data from the National Vulnerability Database

https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-119

Buffer overtlows are prevalent

Total number of buffer overflow vulnerabilities
1000
750
500

250

O —M——
1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Data from the National Vulnerability Database

https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-119

Buffer overtlows are impactful

Rank|Score| ID Name
[1] [93.8 CWE- |Improper Neutralization of Special Elements used in
' 89 |an SQL Command ('SQL Injection')
[2] (83.3 WE- |Improper Neutralization of Special Elements used in
- 78 ||an OS Command ('‘OS Command Injection')
(31 (79.0 CWE- |Buffer Copy without Checking Size of Input ('Classic
' 120 ||Buffer Overflow')
(4] (77.7 CWE- \Improper Neutralization of Input During Web Page
' 79 Generation ('Cross-site Scripting')
[5] ||76.9 % Missing Authentication for Critical Function
[6] ||76.8 % Missing Authorization
[7] |75.0 % Use of Hard-coded Credentials
[8] |[75.0 % Missing Encryption of Sensitive Data
[9] |74.0 CWE- Unrestricted Upload of File with Dangerous Type
434
[10] [73.8 CWE- Reliance on Untrusted Inputs in a Security Decision
807
[11] |73.1 (2:—%0'5— Execution with Unnecessary Privileges
[12] (70.1 % Cross-Site Request Forgery (CSRF)

MITRE's top-25 most dangerous software errors (from 2011)

This class

http://cwe.mitre.org/top25/

Note about terminology

We will use buffer overflow to mean any access of a
buffer outside of its allotted bounds

 An over-read, or an over-write
* During iteration (“running off the end”) or by direct access

 Could be to addresses that precede or follow the buffer

Other terms you may hear (more specific)
 Underflow, over-read, out-of-bounds access, etc.

* Some use buffer overflow only for writing off the end

Memory layout

All programs are stored In memory

4G5 Oxffffffff

0 0x00000000

All programs are stored In memory

4G

The process’s view
of memory is that
it owns all of it

Oxffffffff

\

In reality, these are
virtual addresses;
the OS/CPU map
them to physical

addresses

/

0x00000000

The Instructions themselves are in memory

4G5 Oxffffffff

O0x4c2 sub $0x224,%esp
Ox4cl push %ecx
O0x4bf mov %esp, 3ebp

Ox4be push %ebp

Text
0 0x00000000

Data’s location depends on how It's created

4G

Uninit’d data
Init’'d data
Text

Oxffffffff

static int x;

static const int y=10;

0x00000000

Data’s location depends on how It's created

4G

Uninit'd data
Kno.wn .at Init'd data
compile time
Text

Oxffffffff

static int x;

static const int y=10;

0x00000000

Data’s location depends on how It's created

Set when
process starts

Known at
compile time

0

4G

| | Oxffffffff

_ static const int y=10;

0x00000000

Data’s location depends on how It's created

Set when 4G OxfEFEEEES
process starts int £0) 1
int x;

Runtime

malloc(sizeof(long));

oo time [LIBHGGR] s<acic const
i . static const int y=10;
T e

0 0x00000000

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

0x00000000

Oxffffffff

Heap

 ——

+«—— Stack

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

0x00000000

Compiler provides instructions that
adjusts the size of the stack at runtime

Oxffffffff

Heap

 ——

+«—— Stack

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

0x00000000

Compiler provides instructions that
adjusts the size of the stack at runtime

Oxffffffff

Heap

 ——

+«—— Stack

T

Stack
pointer

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

0x00000000

Compiler provides instructions that
adjusts the size of the stack at runtime

Oxffffffff

Heap

 ——

+«—— Stack

T

Stack
pointer

push 1
push 2
push 3

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap Stack
Stack push 1
: push 2
pointer bush 3

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap Stack
Stack push 1
: push 2
pointer oush 3

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 1 Stack
Stack push 1
: push 2
pointer oush 3

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 1 Stack
Stack push 1
: push 2
pointer oush 3

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 2 1 Stack
Stack push 1
: push 2
pointer oush 3

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 1 Stack
Stack push 1
: push 2
pointer oush 3

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 3 2 1 Stack
Stack push 1
: push 2
pointer oush 3

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 3 2 1 Stack
Stack push 1
: push 2
pointer oush 3

return

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

0x00000000

Compiler provides instructions that
adjusts the size of the stack at runtime

Oxffffffff

Heap

3

2

:

Stack

|

Stack
pointer

push 1
push 2
push 3

return

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 3 2 1 Stack
apportioned by the OS; Stack push 1
managed in-process pointer Fup

by malloc return

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 3 2 1 Stack
apportioned by the OS; Stack push 1
managed in-process pointer Fup
by malloc return

Focusing on the stack for now

Stack layout when calling functions

e \WWhat do we do when we call a function?
- \What data need to be stored?
- Where do they go”

e How do we return from a function?
- \What data need to be restored?
* Where do they come from?

Code examples
(see ~/UMD/examples/ in the VM)

