
E-VOTING ANALYSIS!
case study!

Kohno et al., IEEE S&P 2004!
Halderman, 2016!

“Security mindset”!
•  Consider a complex system:!
•  Potential security threats?!
•  Hidden and explicit assumptions!
•  How to mitigate the risks?!
•  What are different players’ incentives?!

Michelle Mazurek, Fall 2016 35

1. Summarize the system!
1.  Pre-election: Poll worker

loads “ballot definition”
via e.g. USB!

2.  Voting: Voter obtains
single-use smartcard,
votes, vote stored
encrypted, card canceled!

3.  Post-election: Votes
decrypted and sent to
tabulator, who counts !

!
Michelle Mazurek, Fall 2016 36

o Mickey Mouse

o Donald Duck

o Minnie Mouse

2(b)	

2(c)	

3	

Poll	

worker	

Voter	

Tabulator	

2(a)	

Token	

Encrypted	

disk	

1	

BDF	

Vo?ng	
 machine	

2. Identify goals/requirements!
•  Confidentiality: Can’t find

out who I voted for!

•  Integrity: Can’t alter votes!

•  Availability: Can’t deny
opportunity to vote!

•  Usability: General public
can vote correctly without
undue burden!

Michelle Mazurek, Fall 2016 37

o Mickey Mouse

o Donald Duck

o Minnie Mouse

2(b)	

2(c)	

3	

Poll	

worker	

Voter	

Tabulator	

2(a)	

Token	

Encrypted	

disk	

1	

BDF	

What if the attacker can violate these,
but you catch him/her? �

3. Identify adversaries/threats!
•  Poll worker, voter, outsider!

•  Display one vote / count a
different vote!

•  Vote multiple times!

•  End election early (DOS)!

•  Tamper with stored data!

•  Reveal who voted for whom!

Michelle Mazurek, Fall 2016 38

o Mickey Mouse

o Donald Duck

o Minnie Mouse

2(b)	

2(c)	

3	

Poll	

worker	

Voter	

Tabulator	

2(a)	

Token	

Encrypted	

disk	

1	

BDF	

Diebold Accuvote TS!
•  Used in 37 states! (in 2004)!
•  No cryptography protects smartcards, ballot

definition file!
•  “Protected counter” in single, mutable file!
•  Pose as voting machine, send to tabulator!
•  Homebrew crypto protects vote logs!
•  Hardcoded key since at least 1998!

•  Read the paper for more!

Michelle Mazurek, Fall 2016 39

Follow-up!
•  More researchers confirmed these bugs and

found others (got real hardware)!
•  State investigations: MD, CA, OH!
•  Similar problems from other manufacturers!
•  Sequoia AVC: designed 1980, used in NJ 2009!

•  “By the 2014 general election, 70% of
American voters were casting ballots on
paper”!

Michelle Mazurek, Fall 2016 41

Takeaways!
•  Adversarial thinking!
•  Whole-systems view!
•  Hardware, software, network, users, economics!

•  Only as strong as weakest link!
•  Break into building vs. sniff unencrypted traffic!
•  You have to be right always, adversary once!

•  Never homebrew crypto!!
•  Security through obscurity DOESN’T WORK!!

Michelle Mazurek, Fall 2016 42

This time

• History

• Memory layouts

• Buffer overflow fundamentals

Buffer
overflows

By investigating

and other memory safety vulnerabilities

We will begin

Software
Security
our 1st section:

screensaver --prompt=“Don’t unlock plz”

Don't unlock plz

press ctrl-c to logout
Locked by dml

screensaver --prompt=“Don’t unlock pretty plz”

Don't unlock pretty  
plz

press ctrl-c to logout
Locked by dml

screensaver --prompt=“Don’t unlock plz␠␠␠\  
␠␠␠”

Don't unlock plz

Locked by dml
press ctrl-c to logout

screensaver —prompt=“Under maintenance;\  
Do not interrupt␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠\  
␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠␠”

Under maintenance;
Do not interrupt

Locked by dml
press ctrl-c to logout

Most (interesting) software takes input

Target 
host

(victim)

Direct user interaction
• command line interface (stdin)
• user opens a document

Most (interesting) software takes input

Target 
host

(victim)

Direct user interaction
• command line interface (stdin)
• user opens a document

Network communication
• emails
• various protocols

Most (interesting) software takes input

Target 
host

(victim)

Direct user interaction
• command line interface (stdin)
• user opens a document

Network communication
• emails
• various protocols

Sensing the outside world
• QR codes (to link w/ malware)
• sound recordings

Third-party libraries

Goal: Correct operation despite malicious inputs

Future code updates
Others…

What is a buffer overflow?
• A low-level bug, typically in C/C++

• Significant security implications!

• If accidentally triggered, causes a crash

• If maliciously triggered, can be much worse
• Steal private info
• Corrupt important info
• Run arbitrary code

Why study them?
• Buffer overflows are still relevant today

• C and C++ are still popular
• Buffer overflows still occur with regularity

• They have a long history
• Many different approaches developed to defend against

them, and bugs like them

• They share common features with other bugs we will study
• In how the attack works
• In how to defend against it

C and C++ still very popular

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Critical systems in C/C++
• Most OS kernels and utilities

• fingerd, X windows server, shell

• Many high-performance servers
• Microsoft IIS, Apache httpd, nginx
• Microsoft SQL server, MySQL, redis, memcached

• Many embedded systems
• Mars rover, industrial control systems,

automobiles, healthcare devices

A successful attack on these systems is
particularly dangerous!

We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 1999 2000 2001 2002 2003

• Morris worm
• Propagated across machines (too aggressively, thanks to a bug)
• One way it propagated was a buffer overflow attack against a

vulnerable version of fingerd on VAXes
• Sent a special string to the finger daemon, which caused it to

execute code that created a new worm copy
• Didn’t check OS: caused Suns running BSD to crash

• End result: $10-100M in damages, probation, community service

(Robert Morris is now a professor at MIT)

We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 1999 2000 2001 2002 2003

• CodeRed
• Exploited an overflow in the MS-IIS server
• 300,000 machines infected in 14 hours

We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 1999 2000 2001 2002 2003

• SQL Slammer
• Exploited an overflow in the MS-SQL server
• 75,000 machines infected in 10 minutes

We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 2008 2009 2010 2011 2012

• Conficker worm
• Exploited an overflow in Windows RPC
• ~10 million machines infected

We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 2008 2009 2010 2011 2012

• Stuxnet
• Exploited several overflows nobody had at the time known

about (“zero-day”)
• Windows print spooler service
• Windows LNK shortcut display
• Windows task scheduler

• Also exploited the same Windows RPC overflow as Conficker
• Impact: legitimized cyber warfare (more on this later)

We’re going to focus on C
A breeding ground for buffer overflow attacks

1988 2008 2009 2010 2011 2012

• Flame
• Same print spooler and LNK overflows as Stuxnet
• Cyber-espionage virus

GHOST: glibc vulnerability introduced in 2000,  
only just announced last year

syslogd bug in Mac OS X & iOS
• syslog: message logging infrastructure

• Useful: one process issues the log messages,
syslogd handles storing/disseminating them

syslogd bug in Mac OS X & iOS
• syslog: message logging infrastructure

• Useful: one process issues the log messages,
syslogd handles storing/disseminating them

Array of int’s

Had this many int’sArray of int’s

Want this many int’sArray of int’s

Want this many int’s

Takes bytes as 2nd arg

Array of int’s

Want this many int’s

How many bytes should global.lockdown_session_fds be?

Takes bytes as 2nd arg

Array of int’s

Want this many int’s

How many bytes should global.lockdown_session_fds be?

Takes bytes as 2nd arg

Array of int’s

global.lockdown_session_count + 1 * sizeof(int)

Want this many int’s

How many bytes should global.lockdown_session_fds be?

Takes bytes as 2nd arg

Array of int’s

(global.lockdown_session_count + 1) * sizeof(int)

global.lockdown_session_count + 1 * sizeof(int)

syslogd bug in Mac OS X & iOS
• syslog: message logging infrastructure

• Useful: one process issues the log messages,
syslogd handles storing/disseminating them

Buffer 
too small

syslogd bug in Mac OS X & iOS
• syslog: message logging infrastructure

• Useful: one process issues the log messages,
syslogd handles storing/disseminating them

Buffer 
too small

Writes 
beyond  

the buffer

Buffer overflows are prevalent

0

4

8

12

16

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Significant percent of all vulnerabilities

Data from the National Vulnerability Database

https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-119

Buffer overflows are prevalent

0

250

500

750

1000

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Total number of buffer overflow vulnerabilities

Data from the National Vulnerability Database

https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-119

This class

Buffer overflows are impactful

MITRE's top-25 most dangerous software errors (from 2011)

http://cwe.mitre.org/top25/

Note about terminology
• We will use buffer overflow to mean any access of a

buffer outside of its allotted bounds
• An over-read, or an over-write
• During iteration (“running off the end”) or by direct access
• Could be to addresses that precede or follow the buffer

• Other terms you may hear (more specific)
• Underflow, over-read, out-of-bounds access, etc.
• Some use buffer overflow only for writing off the end

Memory layout

All programs are stored in memory

0

4G 0xffffffff

0x00000000

All programs are stored in memory

0

4G 0xffffffff

0x00000000

The process’s view
of memory is that

it owns all of it

In reality, these are
virtual addresses;
the OS/CPU map
them to physical

addresses

The instructions themselves are in memory

Text

0

4G 0xffffffff

0x00000000

0x4bf mov %esp,%ebp

0x4be push %ebp

0x4c1 push %ecx
0x4c2 sub $0x224,%esp

...

...

Data’s location depends on how it’s created

Text

0

4G 0xffffffff

0x00000000

Uninit’d data static int x;

Init’d data static const int y=10;

Data’s location depends on how it’s created

Text

0

4G 0xffffffff

0x00000000

Uninit’d data static int x;

Init’d data static const int y=10;
Known at

compile time

Data’s location depends on how it’s created

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;
Known at

compile time

Set when 
process starts

Data’s location depends on how it’s created

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;

Runtime

Known at
compile time

Set when 
process starts

Heap malloc(sizeof(long));

Stack
int f() {  
 int x;

 …

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Heap

0xffffffff0x00000000

Stack

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

1

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

1

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

12

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

12

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

return

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

return

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

return

{
apportioned by the OS;

managed in-process
by malloc

We are going to focus on runtime attacks

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

return

{
apportioned by the OS;

managed in-process
by malloc

Focusing on the stack for now

Stack layout when calling functions

• What do we do when we call a function?
• What data need to be stored?
• Where do they go?

• How do we return from a function?
• What data need to be restored?
• Where do they come from?

Code examples
(see ~/UMD/examples/ in the VM)

