Memory safety attacks

Bufter overflows
- (Can be used to read/write data on stack or heap
- Can be used to inject code (ultimately root shell)

Format string errors
- Can be used to read/write stack data

Integer overflow errors
- Can be used to change the control flow of a program

TOCTOU problem
- Can be used to raise privileges

What's wrong with this code”

Suppose that it has higher privilege than the user

int main() {
char buf[1024];

1if(access(argv[1l], R OK) != 0) {
printf (“cannot access file\n”);
exit(-1);

}

file = open(argv[1l], O RDONLY);
read(file, buf, 1023);
close(file);

printf(“%s\n”, buf);

return 0;

What's wrong with this code”

Suppose that it has higher privilege than the user

int main() {
char buf[1024];

uid if (access(argv[1l], R OK) != 0) {
printf(“cannot access file\n”);
exit(-1);
}
euid file = open(argv[1l], O RDONLY);

read(file, buf, 1023);
close(file);
printf(“%s\n”, buf);
return 0;

What's wrong with this code”

Suppose that it has higher privilege than the user

int main() {

char buf[1024];
~attacker/mystuff.txt

uid 1f(access, R_OK) != 0) {

printf(“cannot access file\n”);
exit(-1);

}

euid file = open(argv[1l], O RDONLY);
read(file, buf, 1023);
close(file);

printf(“%$s\n”, buf);

return 0;

What's wrong with this code”

Suppose that it has higher privilege than the user

int main() {

char buf[1024];
~attacker/mystuff.txt

uid 1f(access, R OK) != 0) {

printf(“cannot access file\n”);
exit(-1);

}

euid file = open(argv[1l], O RDONLY);
read(file, buf, 1023);
close(file);

printf(“%$s\n”, buf);

return 0;

What's wrong with this code”

Suppose that it has higher privilege than the user

int main() {

char buf[1024];
~attacker/mystuff.txt

uid J_f(access, R OK) != 0) {

printf(“cannot access file\n”);
exit(-1);

ln -s /usr/sensitive ~attacker/mystuff.txt
euld file = open(argv[1l], O RDONLY);
read(file, buf, 1023);
close(file);
printf(“%$s\n”, buf);
return 0;

What's wrong with this code”

Suppose that it has higher privilege than the user

int main() {

char buf[1024];
~attacker/mystuff.txt

uid 1f(access, R OK) != 0) {

printf(“cannot access file\n”);
exit(-1);

ln -s /usr/sensitive ~attacker/mystuff.txt
euld file = open(argv[1l], O RDONLY);
read(file, buf, 1023);
close(file);
printf(“%$s\n”, buf);
return 0;

}

“Time of Check/Time of Use” Problem (TOCTOU)

uid

eulid

Avoiding TOCTOU

int main() {
char buf[1024];

1if(access(argv[1l], R OK) != 0) {
printf (“cannot access file\n”);
exit(-1);

}

file = open(argv[1l], O RDONLY);
read(file, buf, 1023);
close(file);

printf (buf);

Avoiding TOCTOU

int main() {
char buf[1024];

uid

euid file = open(argv[1l], O RDONLY);
read(file, buf, 1023);
close(file);

printf (buf);

uid

euid

Avoiding TOCTOU

int main() {
char buf[1024];

euld = geteuid();

uid = getuid();

seteuid(uid); // Drop privileges
file = open(argv[1l], O RDONLY);
read(file, buf, 1023);
close(file);

printf (buf);

uid

euid

Avoiding TOCTOU

int main() {
char buf[1024];

euld = geteuid();

uid = getuid();

seteuid(uid); // Drop privileges
file = open(argv[1l], O RDONLY);
read(file, buf, 1023);

close(file);

seteuid(euid); // Restore privileges
printf (buf);

Defensive coding for
Memory Safety

Defensive coding practices

* Think detensive driving
- Avoid depending on anyone else around you

It someone does something unexpected, you won't
crash (or worse)

It's about minimizing trust

 Each module takes responsibility for checking the
validity of all inputs sent to it

- Even if you “know” your callers will never send a NULL
pointer...

...Better to throw an exception (or even exit) than run
malicious code

http:/nob.cs.ucdavis.edu/bishop/secprog/robust.html

http://nob.cs.ucdavis.edu/bishop/secprog/robust.html

How to program defensively

» Code reviews, real or imagined
« Organize your code so it is obviously correct
Re-write until it would be self-evident to a reviewer

"‘Debugqing is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

 Remove the opportunity for programmer mistakes
with better languages and libraries
- Java performs automatic bounds checking
« C++ provides a safe std: :string class

Secure coding practices

char digit to char(int 1) {
char convert[] = “0123456789";
return convert[i];

}

Think about all potential inputs, no matter how peculiar

Secure coding practices

char digit to char(int 1) {
char convert[] = “0123456789";
return convert[i];

}

Think about all potential inputs, no matter how peculiar

char digit to char(int 1) {
char convert[] = “0123456789";
if(i <0 || 1 >09)
return ‘?';
return convert[i];

Enforce rule compliance at runtime

Rule: Use safe string functions

« Jraditional string library routines assume
target buffers have sufficient length

char str[4];

char buf[10] = “good”;

strcpy(str,”hello”); // overflows str
strcat(buf,” day to you”); // overflows buf

» Safe versions check the destination length

char str[4];

char buf[10] = “good”;
strlcpy(str,”hello”,sizeof(str)); //fails
strlcat (buf,” day to you”,sizeof(buf));//fails

Replacements

o ... for string-oriented functions

* strcat = strlcat

* strcpy = strlcpy strncpy/strncat O NOt
© strncat = strlcat NUL-terminate if they run
* strncpy = strlcpy , . C
. sprintf = snprintf up against the size limit

 vsprintf = vsnprintf
* gets = fgets

e Microsoft versions different

strcpy s, strcat_s, ...

Note: None of these in and of themselves are “insecure.”
They are just commonly misused.

(Better) Rule: Use safe string library

« Libraries designed to ensure strings used safely
- Safety first, despite some performance loss

 Example: Very Secure FTP (vsftp) string library

http://vsftpd.beasts.org/

struct mystr; // impl hidden

void str alloc text(struct mystr* p str,
const char* p src);
void str append str(struct mystr* p str,
const struct mystr* p other);
int str equal(const struct mystr* p strl,
const struct mystr* p str2);
int str contains space(const struct mystr* p str);

* Another example: C++ sta:string Safe string library

http://vsftpd.beasts.org/

Rule: Understand pointer arithmetic

Rule: Understand pointer arithmetic

int x;
int *pi = &x;
char *pc = (char*) &x;

Rule: Understand pointer arithmetic

int x; (pi + 1) == (pc + 1) 227?
int *pi = &x;
char *pc = (char*) &x;

Rule: Understand pointer arithmetic

int x; (pi + 1) == (pc + 1) 227?
int *pi = &x;

char *pc = (char*) &x; m “ “ “

Rule: Understand pointer arithmetic

int x; (pi + 1)_== (pc + 1) 227?
int *pi = &x;

char *pc = (char*) &x; m “ “ “

Rule: Understand pointer arithmetic

int x; (pi + 1)_== (pc + 1) 227
int *pi = &x;

char *pc = (char*) &x; “ “ “

Rule: Understand pointer arithmetic

int x; (pi + 1)_== (pc + 1) 227
int *pi = &x;

char *pc = (char*) &x; “ “ “

* sizeof () returns number of bytes, but pointer
arithmetic multiplies by the sizeof the type

int buf[SIZE] = { .. };
int *buf ptr = buf;

while (!done() && buf ptr < (buf + sizeof(buf))) {
*buf ptr++ = getnext(); // will overflow

}

Rule: Understand pointer arithmetic

int x; (pi + 1)_== (pc + 1) 227
int *pi = &x;

char *pc = (char*) &x; “ “ “

* sizeof () returns number of bytes, but pointer
arithmetic multiplies by the sizeof the type

int buf[SIZE] = { .. };

int *buf ptr = buf; SIZE * sizeof(int)

while (!done() && buf ptr < (buf + sizeof(buf))) {
*buf ptr++ = getnext(); // will overflow

}

Rule: Understand pointer arithmetic

int x; (pi + 1)_== (pc + 1) 227
int *pi = &x;
char *pc = (char*) &x; “ “ “

X

* sizeof () returns number of bytes, but pointer
arithmetic multiplies by the sizeof the type

int buf[SIZE] = { .. };

int *buf ptr = buf; SIZE * sizeof(int)

while (!done() && buf ptr < (buf + sizeof(buf))) {
*buf ptr++ = getnext(); // will overflow

}

* 50, use the right units

while (!done() && buf ptr < (buf + SIZE)) {
*buf ptr++ = getnext(); // stays in bounds

}

Defend dangling pointers

int *p = malloc(sizeof(int));
free(p);
int **q = malloc(sizeof(int*)); //may reuse p’s space

**q = 3; //crash (or worse)!

Stack Heap

Defend dangling pointers

int x = 5;

int *p = malloc(sizeof(int));

free(p);

int **q = malloc(sizeof(int*)); //may reuse p’s space

**q = 3; //crash (or worse)!

Stack Heap

Defend dangling pointers

int x = 5;
int *p = malloc(sizeof(int));

free(p);

int **qg = malloc(sizeof(int¥*)); may reuse p’s space
*g = &X;
*p=5;

**q = 3; //crash (or worse)!

Stack Heap

Defend dangling pointers

int x = 5;

int *p = malloc(sizeof(int));

free(p);

int **q = malloc(sizeof(int*)); //may reuse p’s spafe

**q = 3; //crash (or worse)!

Stack Heap

Defend dangling pointers

int x = 5;

int *p = malloc(sizeof(int));

free(p);

int **gq = malloc(sizeof(int*)); //may reuse p’s space

Stack Heap

Defend dangling pointers

int x = 5;

int *p = malloc(sizeof(int));

free(p);

int **q = malloc(sizeof(int*)); //may reuse p’s space

Defend dangling pointers

int x = 5;
int *p = malloc(sizeof(int));

free(p);

int **q = malloc(sizeof(int*)); //may reuse p’s space
*q = &Xj

*P = 5;

**q = 3; crash (or worse)!

Stack Heap

Defend dangling pointers

int x = 5;

int *p = malloc(sizeof(int));

free(p);

int **q = malloc(sizeof(int*)); //may reuse p’s space

**g = 3; crash (or worse)!

Defend dangling pointers

int x
int *p
free(p);
int **q

Q

Stack

5

malloc(sizeof(int));

malloc(sizeof(int*));

//may reuse p’s space

IE's Role in the Google-China War

By Bctane Adhaan

Toch Ny Word

QNI 1T IS T

The hack stack on Google that set off the
company's ongoing standoff with China appears to have
come throwgh a zero-day Naw in Microsoft’s IMernet
Explorer browser. Microsoft has relsased & security
advisory, and researchers are hard st work studying the
axploit, The attack appears to consist of several Nles, each » diferent piece of
madware.

AN ot See
ot Viraios

€ -Mat Arucws

C!)"C-A!' SEOUILY COMDAnEs ae SOUTYIng 10 Cope with the faliout from the [mernet Daplorer
(1€) Baw that led to cyberattacks on Google and 23 corporate and indvidesd Customers

The 2erc-Cay Stlack Bhat eapioted IE & part of & lethal cochtall of maiware that is keeping
esQarchans vary Dusy.

"We're Ga0overing tNAgs 0N 8% V- L-The-mirte Dasis, and we've seen sDout & doven Ses
deopped on niected PCx 30 far,” Dmitr Alperavitch, vice prosident of resssrch st McAfer Labs,
1o Techivews Wordd

The amachks on Google, which 2000310¢ 10 ONginate i Chind, Nave 50arked 3 feuvd between e
Intormet glart and the mation’s government ower cornorship, and it could result In Google
NG awdy PIom 15 Dusiness Seakngs 0 the Country.

Pointing to the Flaw

The vulterabilty in IE & an valld poirter reforence, MCOIOMOR 3813 I socarly advisory
979152, which & ssead on Thersday, Under contain condtions, the invald pointer can be
Sccensed after an obolt i Otietod, the adviscry states. I spotally Crafted attacks, Me the
ones Lundhad aganst Google and its oustomers, 1E can dllow remote exacution of code when
the Raw s exploted.

Rule: Use NULL after free

int *p = malloc(sizeof(int));

free(p);

p = NULL; //defend against bad deref

int **q = malloc(sizeof(int*)); //may reuse p’s space

*p = 5; //(good) crash

**q = 3;
X
p: T
g-:

Stack Heap

Rule: Use NULL after free

int x = 5;
int *p = malloc(sizeof(int));

free(p);
p = NULL; //defend against bad deref
int **q = malloc(sizeof(int*)); //may reuse p’s space
*q = &X;
*p = 5; //(good) crash
**q = 3;

X: 5

. oy
p- P
g-

Stack Heap

Rule: Use NULL after free

int x = 5;
int *p = malloc(sizeof(int));

free(p);

p = NULL; defend against bad deref

int **q = malloc(sizeof(int*)); //may reuse p’s space
*q = &X;
*p = 5; //(good) crash
**q=3;
X D
p: n P
g-:

Stack Heap

Rule: Use NULL after free

int x = 5;
int *p = malloc(sizeof(int));
free(p);

p = NULL; //defend against bad deref
int **q = malloc(sizeof(int*)); may reuse p’s space
*q = &Xj

*p 5; //(good) crash
**q = 3;

5

Q o X
v

Stack Heap

Rule: Use NULL after free

int x = 5;
int *p = malloc(sizeof(int));

free(p);
p = NULL; //defend against bad deref
int **q = malloc(sizeof(int*)); may reuse p’s spafe
qd = &X;j
*p = 5; //(good) crash
**q = 3;
X: D
p: © -
g-:

Stack Heap

Rule: Use NULL after free

int x = 5;
int *p = malloc(sizeof(int));

free(p);
p = NULL; //defend against bad deref
int **q = malloc(sizeof(int*)); //may reuse p’s space

Stack Heap

Rule: Use NULL after free

int x = 5;
int *p = malloc(sizeof(int));

free(p);

p = NULL; //defend against bad deref

int **q = malloc(sizeof(int*)); //may reuse p’s space
*q &X;

*P 5; (good) crash
qg = 257

/

Q o X
\®

Stack Heap

Rule: Use NULL after free

int x = 5;
int *p = malloc(sizeof(int));

free(p);

p = NULL; //defend against bad deref

int **q = malloc(sizeof(int*)); //may reuse p’s space
*q = &X;

*P 5; (good) crash
qg = 257

Manage memory properly

int foo(int argl, int arg2) {
struct foo *pfl, *pf2;
int retc = -1;

pfl = malloc(sizeof(struct foo));
if (!isok(argl)) goto DONE;

pf2 = malloc(sizeof(struct foo));
if (!isok(arg2)) goto FAIL ARG2;

retc = 0;

FAIL ARG2:

free(pf2); //fallthru
DONE'::

free(pfl);

return retc;

}

 Common approach in
C. goto chains to
avold duplicated or
missed code
- Like try/finally in
languages like Java

» Confirm your logic!...

Anatomy of a goto fall

static OSStatus
SSLVerifySignedServerKeyExchange(...)

{
OSStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)

goto fail;

f goto fail; § //triggers if if fails: err ==

if ((err = SSLHashSHAl final (&hashCtx, &hashOut)) != 0)
goto fail;

* // SSL verify called somewhere in here

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer (&hashCtx);
return err; //returns err

n =

0 (SUCCESS), without SSL verify function

Rule: Use a safe allocator

ASLR challenges exploits by making the base address
of libraries unpredictable

Challenge heap-based overflows by making the
addresses returned by malloc unpredictable

- Can have some negative performance impact

Example implementations:
- Windows Fault-Tolerant Heap

http://msdn.microsoft.com/en-us/library/windows/desktop/
dd744764(v=vs.85).aspx

« DieHard (on which fault-tolerant heap is based)
http://plasma.cs.umass.edu/emery/diehard.html

http://msdn.microsoft.com/en-us/library/windows/desktop/dd744764(v=vs.85).aspx
http://plasma.cs.umass.edu/emery/diehard.html

Rule: Favor safe libraries

* Libraries encapsulate well-thought-out design.
lake advantage!

Smart pointers

- Pointers with only safe operations

- Lifetimes managed appropriately

 First in the Boost library, now a C++11 standard

* Networking: Google protocol butters, Apache Thrift
- For dealing with network-transmitted data
- Ensures input validation, parsing, etc.
- Efficient

Automated testing

Automated testing techniques

e Static code analysis
e Detects most bugs
* Not automatable: model checking or theorem proving

* Dynamic code analysis

* Monitor execution (in a vm?) for memory safety:
valgrind, address-sanitizer

* But only checks those executions
* High overhead: not suitable for deployed code

* Penetration testing
 actively generate inputs to exploit vulnerabilities
» applicable to programs, applications, network, servers
* Fuzz testing: many many random inputs

Fuzz testing

e Black box

e Tool knows nothing about program or its input
* Easy to use, but most likely explores only shallow states

* Grammar-based
e Generates inputs informed by a grammar
* More work to use, but can explore deeper states

* Mutation
* Take a legal input and mutate it (subject to a grammar)
e Legal input from human or automated (eg, grammer)

 White box

e Generate inputs (partly) informed by the target program
* Combinations of above

Examples: Radamsa and Blab

* Radamsa is a mutation-based, black box fuzzer
- It mutates inputs that are given, passing them along

¢ echo "1 + (2 + (3 + 4))" | radamsa --seed 12 -n 4
514+ (3 + =5))

1 + (3 + 41907596644)

1 + (=4 + (3 + 4))

1+ (2 + (3 + 4

¢ echo .. | radamsa --seed 12 -n 4 | bc -1

 Blab generates inputs according to a grammar
(grammar-based), specified as regexps and CFGs

$ blab -e '(([wrstp][aeiouy]{1,2}){1,4} 32){5} 10’

soty wyplsli tisyro to patu

https://code.google.com/p/ouspg/wiki/Radamsa https://code.google.com/p/ouspg/wiki/Blab

https://code.google.com/p/ouspg/wiki/Radamsa
https://code.google.com/p/ouspg/wiki/Blab

Network-based fuzzing

* Fuzzer can act as

* an endpoint of a communicating pair
* a “man-in-the-middle” of a communicating pair

* Inputs can be generated from

* replays of previously recorded interations
e protocol grammar

* Examples

* American Fuzzy Lop: mutation-based white-box fuzzer
* SPIKE: library for creating network-based fuzzers

Burp Intruder: customized attacks against web apps
BFF,

Sulley

You fuzz, you crash. Then what?

Try to find the root cause

|s there a smaller input that crashes in the
same spot? (Make it easier to understand)

Are there multiple crashes that point back
to the same bug”

Determine if this crash represents an
exploitable vulnerability

In particular, is there a bufter overrun®

FINAING Memaory errors

1. Compile the program with Address Sanitizer

(ASAN)

* Instruments accesses to arrays to check for
overflows, and use-after-free errors
 https://code.google.com/p/address-sanitizer/

2. Fuzz it

3. Did the program crash with an ASAN-
signaled error”? Then worry about
exploitability

o Similarly, you can compile with other sorts of
error checkers tor the purposes of testing
- E.g., valgrind memcheck http://valgrind.org/

https://code.google.com/p/address-sanitizer/
http://valgrind.org/

