
Principles for Secure

Design

Slides from

• Dave Levin 414-spring2016 (includes stuff from Mike Hicks)

• Michelle Mazurek 414-fall2016 (includes stuff from Dave Levin, Mike Hicks)

Making secure software

• Flawed approach: Design and build software, ignore security

at first

• Add security once the functional requirements are satisfied

• Better approach: Build security in from the start

• Incorporate security-minded thinking into all phases of the

development process

Development process

• Requirements

• Design

• Implementation

• Testing/assurance

Security Requirements

Abuse Cases

Code Review (with tools)

Penetration Testing

Security-oriented Design

Risk-based Security Tests

Architectural Risk Analysis

Phases

Note that different processes have

different phases and artifacts, but all

involve the basics above. We’ll keep it

simple and refer to these.

Security engineering

Software vs Hardware

• System design contains software and hardware

• Mostly, we are focusing on the software

• Software is malleable and easily changed

• Advantageous to core functionality

• Harmful to security (and performance)

• Hardware is fast, but hard to change

• Disadvantageous to evolution

• Advantage to security

• Can’t be exploited easily, or changed by an attack

Secure Hardware

• Security functionality in hardware

• Intel’s AES-NI implements cryptography instructions

• Intel SGX: per-process encrypted enclave

• Protect application data from the OS

• Hardware primitives for security

• Physically uncloneable functions (PUFs)

• Source of unpredictable, but repeatable,

randomness, useful for authentication

• Intel MPX - primitives for fast memory safety

Requirements Security Requirements

Abuse Cases

Threat Modeling

Threat Model

• The threat model makes explicit the adversary’s

assumed powers

• Must match reality, otherwise risk analysis of the

system will be wrong

• Critically important: without the threat model

• Cannot asses whether your design will repel that

attacker

• “This system is secure” means nothing

Example network threat model:

Malicious user

• Can connect to a service via the network
• May be anonymous

• Can:
• Measure size, timing of requests, responses

• Run parallel sessions

• Provide malformed inputs or messages

• Drop or send extra messages

• Design: No need to encrypt communications

• Example attacks
• SQL injection, XSS, CSRF, buffer overrun

• Attacker on same network as other users
• e.g., Unencrypted Wi-Fi at coffee shop

• Can read/measure others’ messages

• May also intercept, duplicate, and modify

• Design: Use encrypted communications
• application (SSL), network (IPsec), link (wifi)

• Example attacks:
• Session hijacking, other data theft, side-channel

attack, denial of service

Example network threat model:

Snooping

• Attacker on same machine as other users
• E.g., malware installed on a user’s laptop

• Thus, can additionally
• Read/write user’s files (e.g., cookies) and memory

• Snoop keypresses and other events

• Read/write the user’s display (e.g., to spoof)

• Design:
• Encrypt all stored (sensitive) information

• Worry about key logger

• Example attacks: Password theft (and other

credentials/secrets)

Example network threat model:

Co-located user

• Attacker on server machine

• Like attacker co-located with user

BUT WORSE

Example network threat model:

Compromised server

Bad Model = Bad Security

• Assumptions you make are potential holes the attacker can exploit

• E.g.: Assuming no snooping users no longer valid

• Prevalence of wi-fi networks in most deployments

• Other mistaken assumptions

• Assumption: Encrypted traffic carries no information

• Not true! By analyzing the size and distribution of messages, you

can infer application state

• Assumption: Timing channels carry little information

• Not true! Timing measurements of previous RSA implementations

could eventually reveal an SSL secret key

Finding a good model

• Compare against similar systems

• What attacks does their design contend with?

• Understand past attacks and attack patterns

• How do they apply to your system?

• Challenge assumptions in your design

• What happens if assumption is false?

• What would a breach potentially cost you?

• How hard would it be to get rid of an assumption, allowing for a

stronger adversary?

• What would that development cost?

Security Requirements,

Abuse Cases

Requirements Security Requirements

Abuse Cases

Security Requirements

• Software requirements: typically about what software

should do

• We also want security requirements

• Security-related goals or policies
Example: One user’s bank account balance should not be

learned by, or modified by, another user (unless authorized)

• Mechanisms for enforcing them
Example:

• Users identify themselves using passwords

• passwords are “strong”

• password database only accessible to login program.

Typical Kinds of Requirements

• Policies

• Confidentiality (and Privacy and Anonymity)

• Integrity

• Availability

• Supporting mechanisms

• Authentication

• Authorization

• Auditability

Policy: Confidentiality

• Definition: Sensitive information not leaked unauthorized
• Example policy: Bank account status (including balance) known

only to the account owner

• Privacy: confidentiality for individuals

• Anonymity: special kind of privacy
• Example: Non-account holders should be able to browse the bank

site without being tracked (Here the adversary is the bank)

• Example violations directly or via side channels
• Manipulating the system to directly display Bob’s bank balance to

Alice

• Determining Bob has an account at Bank A according to shorter

delay on login failure

Policy: Integrity

• Definition: Sensitive information not changed by

unauthorized parties or computations

• Example: Only the account owner can authorize

withdrawals from her account

• Violations of integrity can also be direct or indirect

• Example: Withdraw from the account yourself vs.

confusing the system into doing it

Policy: Availability

• Definition: A system is responsive to requests

• Example: A user may always access her account

for balance queries or withdrawals

• Denial of Service (DoS) attacks attempt to

compromise availability

• By busying a system with useless work

• Or cutting off network access

Supporting mechanism:

Authentication

• Who/what is the subject of security policies?

• Need notion of identity and a way to connect action with

identity

• a.k.a. a principal

• How can system tell a user is who she says she is?

• What (only) she knows (e.g., password)

• What she is (e.g., biometric)

• What she has (e.g., smartphone, RSA token)

• Authentication mechanisms that employ more than one of these

factors are called multi-factor authentication

• E.g., passwords and text a special code to user’s smart phone

Supporting mechanism:

Authorization

• Defines when a principal may perform an action

• Example: Bob is authorized to access his own

account, but not Alice’s account

• Access-control policies define what actions might

be authorized

• May be role-based, user-based, etc.

Supporting mechanism:

Audit-ability

• Retain enough information to determine the

circumstances of a breach or misbehavior (or

establish one did not occur)

• Often stored in log files

• Must be protected from tampering,

• Disallow access that might violate other policies

• Example: Every account-related action is logged

locally and mirrored at a separate site

• Only authorized bank employees can view log

Defining Security Requirements

• Many processes for deciding security requirements

• Example: General policy concerns

• Due to regulations/standards (HIPAA, SOX, etc.)

• Due organizational values (e.g., valuing privacy)

• Example: Policy arising from threat modeling

• Which attacks cause the greatest concern?

• Who are likely attackers, what are their goals and methods?

• Which attacks have already occurred?

• Within the organization, or elsewhere on related systems?

Abuse Cases

• Illustrate security requirements

• Describe what system should not do

• Example use case: System allows bank managers

to modify an account’s interest rate

• Example abuse case: User can spoof being a

manager and modify account interest rates

Defining Abuse Cases

• Use attack patterns and likely scenarios to consider how an

attacker’s power could violate a security requirement

• Based on the threat model

• What might occur if a security measure was removed?

• Example: Co-located attacker steals password file and learns

all user passwords

• Possible if password file is not properly hashed, salted

• Example: Snooping attacker replays a captured message,

effecting a bank withdrawal

• Possible if messages have no nonce

Security design

principles

Design Security-oriented design

Design Defects = Flaws

• Recall: Software defects = both flaws and bugs

• Flaws are problems in the design

• Bugs are problems in the implementation

• We avoid flaws during the design phase

• According to Gary McGraw, 50% of security

problems are flaws

• So this phase is very important

Categories of Principles

• Prevention: Eliminate software defects entirely

• Example: Heartbleed bug would have been prevented by

using a type-safe language, like Java

• Mitigation: Reduce harm from exploitation of unknown defects

• Example: Run each browser tab in a separate process, so

exploiting one tab does not give access to data in another

• Detection/Recovery: Identify, understand an attack; undo

damage

• Examples: Monitoring, snapshotting

Principles for building secure systems

• Security is economics
• Principle of least privilege
• Use fail-safe defaults
• Use separation of responsibility
• Defend in depth
• Account for human factors
• Ensure complete mediation
• Kerkhoff’s principle

• Accept that threat models change
• If you can’t prevent, detect
• Design security from the ground up
• Prefer conservative designs
• Proactively study attacks

General rules of thumb that, 
when neglected, result in design flaws

“Security is economics”

• In practice, need to resist a certain level of attack
• Example: Safes come with security level ratings
• “Safe against safecracking tools & 30 min time limit”

• Corollary: Focus energy & time on weakest link

• Corollary: Attackers follow the path of least
resistance

THERE ARE NO SECURE SYSTEMS, ONLY DEGREES OF INSECURITY

You can’t afford to secure against everything, so what do you defend against? 
Answer: That which has the greatest “return on investment”

“Principle of least privilege”

• This doesn’t necessarily reduce probability of failure
• Reduces the EXPECTED COST

• Example: Unix does a BAD JOB:
• Every program gets all the privileges of the user who invoked it
• vim as root: it can do anything -- should just get access to file

• Example: Windows JUST AS BAD, MAYBE WORSE
• Many users run as Administrator,
• Many tools require running as Administrator

Give a program the access it legitimately needs to do its job. NOTHING MORE

“Use fail-safe defaults”

• Default-deny policies
• Start by denying all access
• Then allow only that which has been explicitly permitted

• Crash => fail to secure behavior
• Example: firewalls explicitly decide to forward
• Failure => packets don’t get through

Things are going to break. Break safely.

“Use separation of responsibility”

• Example: US government
• Checks and balances among different branches

• Example: Movie theater
• One employee sells tickets, another tears them
• Tickets go into lockbox

• Example: Nuclear weapons…

Split up privilege so no one person or program has total power.

Use separation of responsibility

“Defend in depth”

• Only in the event that all of them have been breached
should security be endangered.

• Example: Multi-factor authentication:
• Some combination of password, image selection, USB

dongle, fingerprint, iris scanner,… (more on these later)

• Example: “You can recognize a security guru who is
particularly cautious if you see someone wearing both….”

Use multiple, redundant protections

…a belt and suspenders

Defense in depth

…a belt and suspenders

“Ensure complete mediation”

• Any access control system has some resource it needs
to enforce

• Who is allowed to access a files
• Who is allowed to post to a message board…

• Reference Monitor: The piece of code that checks for
permission to access a resource

Make sure your reference monitor sees every access to every object

Ensure complete mediation

“Account for human factors”

• The security of your system ultimately lies in the hands of
those who use it.

• If they don’t believe in the system or the cost it takes to
secure it, then they won’t do it.

• Example: “All passwords must have 15 characters, 3
numbers, 6 hieroglyphics, …”

(1) “Psychological acceptability”:  
Users must buy into the security model

Account for human factors (“psychological acceptability”) 
(1) Users must buy into the security

“Account for human factors”

• The security of your system ultimately lies in the hands of
those who use it.

• If it is too hard to act in a secure fashion, then they won’t
do it.

• Example: Popup dialogs

(2) The security system must be usable

Account for human factors
(2) The security system must be usable

Account for human factors
(2) The security system must be usable

Account for human factors
(2) The security system must be usable

Account for human factors
(2) The security system must be usable

“Account for human factors”

• The security of your system ultimately lies in the hands of
those who use it.

• If it is too hard to act in a secure fashion, then they won’t
do it.

• Example: Popup dialogs

(2) The security system must be usable

“Kerkhoff’s principle”

• Originally defined in the context of crypto systems
(encryption, decryption, digital signatures, etc.):

• Crypto systems should remain secure even when an
attacker knows all of the internal details

• It is easier to change a compromised key than to update all
code and algorithms

• The best security is the light of day

Don’t rely on security through obscurity

Kerkhoff’s principle??

Kerkhoff’s principle!

Principles for building secure systems

• Security is economics
• Principle of least privilege
• Use fail-safe defaults
• Use separation of responsibility
• Defend in depth
• Account for human factors
• Ensure complete mediation
• Kerkhoff’s principle

• Accept that threat models change;
adapt your designs over time

• If you can’t prevent, detect
• Design security from the ground up
• Prefer conservative designs
• Proactively study attacks

Self-explanatory:Know these well:

