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Trusted computing bases



Every system has a TCB
• Your reference monitor 

• Compiler 

• OS 

• CPU 

• Memory 

• Keyboard…..



What is trustworthy here?





What is not trustworthy here?
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• Correct 

• Complete 

• Secure

Two key principles behind a good TCB: 

KISS           Privilege Separation



KISS: Small TCB
• Keep the TCB small (and simple) to reduce overall susceptibility to 

compromise 
• The trusted computing base (TCB) comprises the system components 

that must work correctly to ensure security 

• Example: Operating system kernels 
• Kernels enforce security policies, but are often millions of lines of code 

- Compromise in a device driver compromises security overall 
• Better: Minimize size of kernel to reduce trusted components 

- Device drivers moved outside of kernel in micro-kernel designs



Failure: Large TCB
• Security software 

is part of the TCB  

• But as it grows in 
size and 
complexity, it 
becomes 
vulnerable itself, 
and can be 
bypassed

http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484449

Vulnerability Title Fix Avail? Date Added 

XXXXXXXXXXXX XXXXXXXXXXXX Local Privilege Escalation Vulnerability No 8/25/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Denial of Service Vulnerability Yes 8/24/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 8/20/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Sanitization Bypass Weakness No 8/18/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Security Bypass Vulnerability  No 8/17/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities Yes 8/16/2010 

XXXXXXXXXXXX XXXXXXXXXXXX  Remote Code Execution Vulnerability No 8/16/2010 

XXXXXXXXXXXX XXXXXXXXXXXX  Use-After-Free Memory Corruption Vulnerability No 8/12/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/10/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Buffer Overflow Vulnerabilities No 8/10/2010 

XXXXXXXXXXXX XXXXXXXXXXXX  Stack Buffer Overflow Vulnerability Yes 8/09/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Security-Bypass Vulnerability No 8/06/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities No 8/05/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 7/29/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Remote Privilege Escalation Vulnerability No 7/28/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Cross Site Request  Forgery Vulnerability No 7/26/2010 

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Denial Of Service Vulnerabilities No 7/22/2010 

Additional security layers often create vulnerabilities… 

Awaiting Vendor Reply/Confirmation Awaiting CC/S/A use validation  Vendor Replied – Fix in development Color Code Key: 

6 of the 
vulnerabilities 
are in security 

software 

October 2010 vulnerability watchlist 

Approved for Public Release, Distribution Unlimited 

http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484449
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TCB: Privilege Separation

• Don’t give a part of the system more privileges than 
it needs to do its job (“need to know”)

• Principle of least privilege

• Example: Web server daemon
• Binding to port 80 requires root
• Don’t want your whole web server running as root!

• Example: Email apps often drop you into an editor
• vi, emacs
• But these editors often permit dropping you into a shell

Isolate privileged operations to as small a module as possible



Lesson: Trust is Transitive
• If you trust something, you trust what it trusts

• This trust can be misplaced 

• Previous e-mail client example
• Mailer delegates to an arbitrary editor 
• The editor permits running arbitrary code 
• Hence the mailer permits running arbitrary code



SecComp



SecComp
• Linux system call enabled since 2.6.12 (2005)

• Affected process can subsequently only perform 
read, write, exit, and sigreturn system calls

- No support for open call: Can only use already-open file descriptors
• Isolates a process by limiting possible interactions



SecComp
• Linux system call enabled since 2.6.12 (2005)

• Affected process can subsequently only perform 
read, write, exit, and sigreturn system calls

- No support for open call: Can only use already-open file descriptors
• Isolates a process by limiting possible interactions

• Follow-on work produced seccomp-bpf
• Limit process to policy-specific set of system calls, 

subject to a policy handled by the kernel
- Policy akin to Berkeley Packet Filters (BPF)

• Used by Chrome, OpenSSH, vsftpd, and others
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Idea: Isolate Flash Player
• Call fork to create a new process 
• In the new process, open the file
• Call exec to run Flash player

• Receive .swf code, save it

.swf 
code

open

• Call seccomp-bpf to compartmentalize



Case study: VSFTPD



Very Secure FTPD
• FTP: File Transfer Protocol 

- More popular before the rise of HTTP, but still in use 
- 90’s and 00’s: FTP daemon compromises were frequent and 

costly, e.g., in Wu-FTPD, ProFTPd, … 

• Very thoughtful design aimed to prevent and 
mitigate security defects  

• But also to achieve good performance
- Written in C 

• Written and maintained by Chris Evans since 2002 
- No security breaches that I know of

https://security.appspot.com/vsftpd.html

https://security.appspot.com/vsftpd.html
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VSFTPD Threat model
• Clients untrusted, until authenticated

• Once authenticated, limited trust:
- According to user’s file access control policy
- For the files being served FTP (and not others)

• Possible attack goals
- Steal or corrupt resources (e.g., files, malware)
- Remote code injection

• Circumstances:
- Client attacks server 
- Client attacks another client
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Defense: Secure Strings
struct mystr
{
  char* PRIVATE_HANDS_OFF_p_buf;
  unsigned int PRIVATE_HANDS_OFF_len;
  unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Normal (zero-terminated) C string
The actual length (i.e., strlen(PRIVATE_HANDS_OFF_p_buf))

Size of buffer returned by malloc



void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
                           unsigned int len)
{
  …
}

void
str_copy(struct mystr* p_dest, const struct mystr* p_src)
{
  private_str_alloc_memchunk(p_dest, p_src->p_buf, p_src->len);
}

struct mystr
{
  char* p_buf;
  unsigned int len;
  unsigned int alloc_bytes;
};

replace uses of char* with struct mystr* 
and uses of strcpy with str_copy 



void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
                           unsigned int len)
{
  /* Make sure this will fit in the buffer */
  unsigned int buf_needed;
  if (len + 1 < len)
  {
    bug("integer overflow");
  }
  buf_needed = len + 1;
  if (buf_needed > p_str->alloc_bytes)
  {
    str_free(p_str);
    s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
    p_str->alloc_bytes = buf_needed;
  }
  vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
  p_str->p_buf[len] = '\0';
  p_str->len = len;
}

struct mystr
{
  char* p_buf;
  unsigned int len;
  unsigned int alloc_bytes;
};

Copy in at most len
bytes from p_src

into p_str
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void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
                           unsigned int len)
{
  /* Make sure this will fit in the buffer */
  unsigned int buf_needed;
  if (len + 1 < len)
  {
    bug("integer overflow");
  }
  buf_needed = len + 1;
  if (buf_needed > p_str->alloc_bytes)
  {
    str_free(p_str);
    s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
    p_str->alloc_bytes = buf_needed;
  }
  vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
  p_str->p_buf[len] = '\0';
  p_str->len = len;
}

struct mystr
{
  char* p_buf;
  unsigned int len;
  unsigned int alloc_bytes;
};

consider NUL 
terminator when 

computing space

allocate space, 
if needed

copy in p_src 
contents

Copy in at most len
bytes from p_src

into p_str
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Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed
• Clients assume that library calls always succeed

• Example: malloc()
• What if argument is non-positive?

- We saw earlier that integer overflows can induce this behavior
- Leads to buffer overruns

• What if returned value is NULL?
- Oftentimes, a de-reference means a crash
- On platforms without memory protection, a dereference can cause 

corruption



void*
vsf_sysutil_malloc(unsigned int size)
{
  void* p_ret;
  /* Paranoia - what if we got an integer overflow/underflow? */
  if (size == 0 || size > INT_MAX)
  {
    bug("zero or big size in vsf_sysutil_malloc");
  }  
  p_ret = malloc(size);
  if (p_ret == NULL)
  {
    die("malloc");
  }
  return p_ret;
}



void*
vsf_sysutil_malloc(unsigned int size)
{
  void* p_ret;
  /* Paranoia - what if we got an integer overflow/underflow? */
  if (size == 0 || size > INT_MAX)
  {
    bug("zero or big size in vsf_sysutil_malloc");
  }  
  p_ret = malloc(size);
  if (p_ret == NULL)
  {
    die("malloc");
  }
  return p_ret;
}

fails if it receives 
malformed 

argument or runs 
out of memory
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Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions 
- Very little code runs as root 

• Reduce privileges as much as possible 
• Run as particular (unprivileged) user 

- File system access control enforced by OS 
• Use capabilities and/or SecComp on Linux 

- Reduces the system calls a process can make 

• chroot to hide all directories but the current one 
• Keeps visible only those files served by FTP

small 
trusted 

computing 
base principle 

of 
least 

privilege
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• Command reader sandboxed
• Not root 
• Handles most commands 
• Except few requiring privilege

• Comm. proc. only talks to reader
• And, again, white-lists its limited input
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Attack: Cross-session

connection 
server

command 
processorcommand 

reader/
executor

client 2

ATTACKX
• Each session isolated

• Only can talk to one client

client 1
command 
processorcommand 

reader/
executor

CMD

CMD
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Separation of responsibilities

Kerkhoff’s principle!

TCB: KISS

TCB: Privilege separation

Principle of least privilege
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Reasoning about code safety
• Goal: Confidence that our code is safe and correct

• Approach: Build up this confidence function by function, module by module

• Modularity provides boundaries for our reasoning

• Preconditions: what must hold to be correct (“REQUIRES”) 
• Postconditions: what holds after the function (“ENSURES”)

• Think of it as a contract for using the module 
• “Statement 1’s postcondition should meet statement 2’s precondition” 

• Invariant = Conditions that always hold within some part of a function



What are the preconditions to ensure safety?

/* requires: p != NULL (and p is a valid pointer)       */
/* ensures: retval is the first four bytes p pointed to */

int deref(int *p) {
    return *p;
}



What are the preconditions to ensure safety?

/* requires: p != NULL (and p is a valid pointer)       */
/* ensures: retval is the first four bytes p pointed to */

int deref(int *p) {
    return *p;
}



What are the postconditions to ensure safety?

/* ensures: retval != NULL (and a valid pointer)   */

void *myalloc(size_t n) {
    void *p = malloc(n);
    if (!p) { perror(“malloc”); exit(1); }  
    return p;
}



What are the postconditions to ensure safety?

/* ensures: retval != NULL (and a valid pointer)   */

void *myalloc(size_t n) {
    void *p = malloc(n);
    if (!p) { perror(“malloc”); exit(1); }  
    return p;
}



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i      */

/* requires: a != NULL   */

/* requires: i < size(a) */



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i      */

/* requires: a != NULL   */

/* requires: i < size(a) */



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i      */

/* requires: a != NULL   */

/* requires: i < size(a) */

No line of code above this  
guarantees it will hold:  

so move it up



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i      */

/* requires: a != NULL   */

/* requires: i < size(a) */



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i      */

/* requires: a != NULL   */

/* requires: i < size(a) */



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i      */

/* requires: a != NULL   */

/* requires: i < size(a) */

Line above it: size_t i 
ensures that 0 <= i always



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: a != NULL   */

/* requires: i < size(a) */

Line above it: size_t i 
ensures that 0 <= i always



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: a != NULL   */

/* requires: i < size(a) */



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: a != NULL   */

/* requires: i < size(a) */

Not guaranteed by above code



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: a != NULL   */

/* requires: i < size(a) */

Not guaranteed by above code

/* requires: n <= size(a) */



What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)  
        total += a[i];  
    return total;
}

Approach: 
   1. Identify each memory access  
   2. Annotate with preconditions it requires  
   3. Propagate the requirements up

Memory  
access

/* requires: a != NULL   */

/* requires: n <= size(a) */



char *tbl[N];  /* N is of type int */

/* requires: s != NULL and valid, and NULL-terminated         */
/* ensures:  0 <= retval < N                                  */
int hash(char *s) {
    int h = 17;
    while (*s)
        h = 257*h + (*s++) + 3;  
    return h % N;
}

/* requires: s != NULL (and a valid) and 0 <= hash < size(tbl) */
bool search(char *s) {
    int i = hash(s);  
    return tbl[i] && (strcmp(tbl[i], s)==0);
}
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Need to change int to unsigned intDoes this code meet its postconditions?



Why use pre & postconditions?
• Serves as documentation 

• It allows modular reasoning: you can verify f() by only looking at 
• The code of f() 
• The annotations on every function that f() calls 

• Thus, reasoning about a function’s safety becomes an (almost) 
purely local activity 

• This is related to defensive programming: 
• Ideally: preconditions are the assumptions we make 
• Practically: they’re constraints that honest clients are expected to follow


