
Trusted computing base

and

Code safety

Slides from Dave Levin 414-spring2016

Trusted computing bases

Every system has a TCB
• Your reference monitor

• Compiler

• OS

• CPU

• Memory

• Keyboard…..

What is trustworthy here?

What is not trustworthy here?

Security requires the TCB be
• Correct

• Complete

• Secure

Security requires the TCB be
• Correct

• Complete

• Secure

Two key principles behind a good TCB:

KISS Privilege Separation

KISS: Small TCB
• Keep the TCB small (and simple) to reduce overall susceptibility to

compromise
• The trusted computing base (TCB) comprises the system components

that must work correctly to ensure security

• Example: Operating system kernels
• Kernels enforce security policies, but are often millions of lines of code

- Compromise in a device driver compromises security overall
• Better: Minimize size of kernel to reduce trusted components

- Device drivers moved outside of kernel in micro-kernel designs

Failure: Large TCB
• Security software

is part of the TCB

• But as it grows in
size and
complexity, it
becomes
vulnerable itself,
and can be
bypassed

http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484449

Vulnerability Title Fix Avail? Date Added

XXXXXXXXXXXX XXXXXXXXXXXX Local Privilege Escalation Vulnerability No 8/25/2010

XXXXXXXXXXXX XXXXXXXXXXXX Denial of Service Vulnerability Yes 8/24/2010

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 8/20/2010

XXXXXXXXXXXX XXXXXXXXXXXX Sanitization Bypass Weakness No 8/18/2010

XXXXXXXXXXXX XXXXXXXXXXXX Security Bypass Vulnerability No 8/17/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities Yes 8/16/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/16/2010

XXXXXXXXXXXX XXXXXXXXXXXX Use-After-Free Memory Corruption Vulnerability No 8/12/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/10/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Buffer Overflow Vulnerabilities No 8/10/2010

XXXXXXXXXXXX XXXXXXXXXXXX Stack Buffer Overflow Vulnerability Yes 8/09/2010

XXXXXXXXXXXX XXXXXXXXXXXX Security-Bypass Vulnerability No 8/06/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities No 8/05/2010

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 7/29/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Privilege Escalation Vulnerability No 7/28/2010

XXXXXXXXXXXX XXXXXXXXXXXX Cross Site Request Forgery Vulnerability No 7/26/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Denial Of Service Vulnerabilities No 7/22/2010

Additional security layers often create vulnerabilities…

Awaiting Vendor Reply/Confirmation Awaiting CC/S/A use validation Vendor Replied – Fix in development Color Code Key:

6 of the
vulnerabilities
are in security

software

October 2010 vulnerability watchlist

Approved for Public Release, Distribution Unlimited

http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484449

TCB: Privilege Separation

• Don’t give a part of the system more privileges than
it needs to do its job (“need to know”)

• Principle of least privilege

Isolate privileged operations to as small a module as possible

TCB: Privilege Separation

• Don’t give a part of the system more privileges than
it needs to do its job (“need to know”)

• Principle of least privilege

• Example: Web server daemon
• Binding to port 80 requires root
• Don’t want your whole web server running as root!

Isolate privileged operations to as small a module as possible

TCB: Privilege Separation

• Don’t give a part of the system more privileges than
it needs to do its job (“need to know”)

• Principle of least privilege

• Example: Web server daemon
• Binding to port 80 requires root
• Don’t want your whole web server running as root!

• Example: Email apps often drop you into an editor
• vi, emacs
• But these editors often permit dropping you into a shell

Isolate privileged operations to as small a module as possible

Lesson: Trust is Transitive
• If you trust something, you trust what it trusts

• This trust can be misplaced

• Previous e-mail client example
• Mailer delegates to an arbitrary editor
• The editor permits running arbitrary code
• Hence the mailer permits running arbitrary code

SecComp

SecComp
• Linux system call enabled since 2.6.12 (2005)

• Affected process can subsequently only perform
read, write, exit, and sigreturn system calls

- No support for open call: Can only use already-open file descriptors
• Isolates a process by limiting possible interactions

SecComp
• Linux system call enabled since 2.6.12 (2005)

• Affected process can subsequently only perform
read, write, exit, and sigreturn system calls

- No support for open call: Can only use already-open file descriptors
• Isolates a process by limiting possible interactions

• Follow-on work produced seccomp-bpf
• Limit process to policy-specific set of system calls,

subject to a policy handled by the kernel
- Policy akin to Berkeley Packet Filters (BPF)

• Used by Chrome, OpenSSH, vsftpd, and others

Idea: Isolate Flash Player

Idea: Isolate Flash Player
• Receive .swf code, save it

.swf
code

Idea: Isolate Flash Player
• Call fork to create a new process
• Receive .swf code, save it

.swf
code

Idea: Isolate Flash Player
• Call fork to create a new process
• In the new process, open the file

• Receive .swf code, save it

.swf
code

open

Idea: Isolate Flash Player
• Call fork to create a new process
• In the new process, open the file
• Call exec to run Flash player

• Receive .swf code, save it

.swf
code

open

Idea: Isolate Flash Player
• Call fork to create a new process
• In the new process, open the file
• Call exec to run Flash player

• Receive .swf code, save it

.swf
code

open

• Call seccomp-bpf to compartmentalize

Case study: VSFTPD

Very Secure FTPD
• FTP: File Transfer Protocol

- More popular before the rise of HTTP, but still in use
- 90’s and 00’s: FTP daemon compromises were frequent and

costly, e.g., in Wu-FTPD, ProFTPd, …

• Very thoughtful design aimed to prevent and
mitigate security defects

• But also to achieve good performance
- Written in C

• Written and maintained by Chris Evans since 2002
- No security breaches that I know of

https://security.appspot.com/vsftpd.html

https://security.appspot.com/vsftpd.html

VSFTPD Threat model

VSFTPD Threat model
• Clients untrusted, until authenticated

VSFTPD Threat model
• Clients untrusted, until authenticated

• Once authenticated, limited trust:
- According to user’s file access control policy
- For the files being served FTP (and not others)

VSFTPD Threat model
• Clients untrusted, until authenticated

• Once authenticated, limited trust:
- According to user’s file access control policy
- For the files being served FTP (and not others)

• Possible attack goals

VSFTPD Threat model
• Clients untrusted, until authenticated

• Once authenticated, limited trust:
- According to user’s file access control policy
- For the files being served FTP (and not others)

• Possible attack goals
- Steal or corrupt resources (e.g., files, malware)

VSFTPD Threat model
• Clients untrusted, until authenticated

• Once authenticated, limited trust:
- According to user’s file access control policy
- For the files being served FTP (and not others)

• Possible attack goals
- Steal or corrupt resources (e.g., files, malware)
- Remote code injection

VSFTPD Threat model
• Clients untrusted, until authenticated

• Once authenticated, limited trust:
- According to user’s file access control policy
- For the files being served FTP (and not others)

• Possible attack goals
- Steal or corrupt resources (e.g., files, malware)
- Remote code injection

• Circumstances:

VSFTPD Threat model
• Clients untrusted, until authenticated

• Once authenticated, limited trust:
- According to user’s file access control policy
- For the files being served FTP (and not others)

• Possible attack goals
- Steal or corrupt resources (e.g., files, malware)
- Remote code injection

• Circumstances:
- Client attacks server

VSFTPD Threat model
• Clients untrusted, until authenticated

• Once authenticated, limited trust:
- According to user’s file access control policy
- For the files being served FTP (and not others)

• Possible attack goals
- Steal or corrupt resources (e.g., files, malware)
- Remote code injection

• Circumstances:
- Client attacks server
- Client attacks another client

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Normal (zero-terminated) C string

char* PRIVATE_HANDS_OFF_p_buf;

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Normal (zero-terminated) C string
The actual length (i.e., strlen(PRIVATE_HANDS_OFF_p_buf))

unsigned int PRIVATE_HANDS_OFF_len;

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Normal (zero-terminated) C string
The actual length (i.e., strlen(PRIVATE_HANDS_OFF_p_buf))

Size of buffer returned by malloc

unsigned int PRIVATE_HANDS_OFF_alloc_bytes;

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Normal (zero-terminated) C string
The actual length (i.e., strlen(PRIVATE_HANDS_OFF_p_buf))

Size of buffer returned by malloc

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 …
}

void
str_copy(struct mystr* p_dest, const struct mystr* p_src)
{
 private_str_alloc_memchunk(p_dest, p_src->p_buf, p_src->len);
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

replace uses of char* with struct mystr*
and uses of strcpy with str_copy

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 /* Make sure this will fit in the buffer */
 unsigned int buf_needed;
 if (len + 1 < len)
 {
 bug("integer overflow");
 }
 buf_needed = len + 1;
 if (buf_needed > p_str->alloc_bytes)
 {
 str_free(p_str);
 s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
 p_str->alloc_bytes = buf_needed;
 }
 vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
 p_str->p_buf[len] = '\0';
 p_str->len = len;
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

Copy in at most len
bytes from p_src

into p_str

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 /* Make sure this will fit in the buffer */
 unsigned int buf_needed;
 if (len + 1 < len)
 {
 bug("integer overflow");
 }
 buf_needed = len + 1;
 if (buf_needed > p_str->alloc_bytes)
 {
 str_free(p_str);
 s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
 p_str->alloc_bytes = buf_needed;
 }
 vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
 p_str->p_buf[len] = '\0';
 p_str->len = len;
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

consider NUL
terminator when

computing space

Copy in at most len
bytes from p_src

into p_str

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 /* Make sure this will fit in the buffer */
 unsigned int buf_needed;
 if (len + 1 < len)
 {
 bug("integer overflow");
 }
 buf_needed = len + 1;
 if (buf_needed > p_str->alloc_bytes)
 {
 str_free(p_str);
 s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
 p_str->alloc_bytes = buf_needed;
 }
 vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
 p_str->p_buf[len] = '\0';
 p_str->len = len;
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

consider NUL
terminator when

computing space

allocate space,
if needed

Copy in at most len
bytes from p_src

into p_str

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 /* Make sure this will fit in the buffer */
 unsigned int buf_needed;
 if (len + 1 < len)
 {
 bug("integer overflow");
 }
 buf_needed = len + 1;
 if (buf_needed > p_str->alloc_bytes)
 {
 str_free(p_str);
 s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
 p_str->alloc_bytes = buf_needed;
 }
 vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
 p_str->p_buf[len] = '\0';
 p_str->len = len;
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

consider NUL
terminator when

computing space

allocate space,
if needed

copy in p_src
contents

Copy in at most len
bytes from p_src

into p_str

Defense: Secure Stdcalls
• Common problem: error handling

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed
• Clients assume that library calls always succeed

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed
• Clients assume that library calls always succeed

• Example: malloc()

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed
• Clients assume that library calls always succeed

• Example: malloc()
• What if argument is non-positive?

- We saw earlier that integer overflows can induce this behavior
- Leads to buffer overruns

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed
• Clients assume that library calls always succeed

• Example: malloc()
• What if argument is non-positive?

- We saw earlier that integer overflows can induce this behavior
- Leads to buffer overruns

• What if returned value is NULL?
- Oftentimes, a de-reference means a crash
- On platforms without memory protection, a dereference can cause

corruption

void*
vsf_sysutil_malloc(unsigned int size)
{
 void* p_ret;
 /* Paranoia - what if we got an integer overflow/underflow? */
 if (size == 0 || size > INT_MAX)
 {
 bug("zero or big size in vsf_sysutil_malloc");
 }
 p_ret = malloc(size);
 if (p_ret == NULL)
 {
 die("malloc");
 }
 return p_ret;
}

void*
vsf_sysutil_malloc(unsigned int size)
{
 void* p_ret;
 /* Paranoia - what if we got an integer overflow/underflow? */
 if (size == 0 || size > INT_MAX)
 {
 bug("zero or big size in vsf_sysutil_malloc");
 }
 p_ret = malloc(size);
 if (p_ret == NULL)
 {
 die("malloc");
 }
 return p_ret;
}

fails if it receives
malformed

argument or runs
out of memory

Defense: Minimal Privilege

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

• Reduce privileges as much as possible
• Run as particular (unprivileged) user

- File system access control enforced by OS
• Use capabilities and/or SecComp on Linux

- Reduces the system calls a process can make

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

• Reduce privileges as much as possible
• Run as particular (unprivileged) user

- File system access control enforced by OS
• Use capabilities and/or SecComp on Linux

- Reduces the system calls a process can make

• chroot to hide all directories but the current one
• Keeps visible only those files served by FTP

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

• Reduce privileges as much as possible
• Run as particular (unprivileged) user

- File system access control enforced by OS
• Use capabilities and/or SecComp on Linux

- Reduces the system calls a process can make

• chroot to hide all directories but the current one
• Keeps visible only those files served by FTP

principle
of

least
privilege

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

• Reduce privileges as much as possible
• Run as particular (unprivileged) user

- File system access control enforced by OS
• Use capabilities and/or SecComp on Linux

- Reduces the system calls a process can make

• chroot to hide all directories but the current one
• Keeps visible only those files served by FTP

small
trusted

computing
base principle

of
least

privilege

Connection Establishment

connection
server

client

Connection Establishment

connection
server

client

TCP conn request

Connection Establishment

connection
server

client

command
processor

Connection Establishment

connection
server

client

command
processor

login
reader

Connection Establishment

connection
server

client

command
processor

login
reader USER, PASS

U+P
OK

OK

Connection Establishment

connection
server

client

command
processor

command
reader/

executor

Performing Commands

connection
server

command
processor

command
reader/

executor
client

Performing Commands

connection
server

command
processor

command
reader/

executor
client

CHDIR

OK

Performing Commands

connection
server

command
processor

command
reader/

executor
client

CHOWN

OK

C
H

O
W

N

O
K

Logging out

connection
server

command
processor

command
reader/

executor
client

Logging out

connection
server

client

Attack: Login

connection
server

client

command
processor

login
reader

Attack: Login

connection
server

client

command
processor

login
reader ATTACK

Attack: Login

connection
server

client

command
processor

login
reader ATTACK

• Login reader white-lists input
• And allowed input very limited
• Limits attack surface

Attack: Login

connection
server

client

command
processor

login
reader ATTACK

• Login reader white-lists input
• And allowed input very limited
• Limits attack surface

• Login reader has limited privilege
• Not root; authentication in separate process
• Mutes capabilities of injected code

Attack: Login

connection
server

client

command
processor

login
reader ATTACK

X

• Login reader white-lists input
• And allowed input very limited
• Limits attack surface

• Login reader has limited privilege
• Not root; authentication in separate process
• Mutes capabilities of injected code

• Comm. proc. only talks to reader
• And, again, white-lists its limited input

Attack: Commands

connection
server

command
processor

command
reader/

executor
client

Attack: Commands

connection
server

command
processor

command
reader/

executor
client

ATTACK

Attack: Commands

connection
server

command
processor

command
reader/

executor
client

ATTACK

• Command reader sandboxed
• Not root
• Handles most commands
• Except few requiring privilege

Attack: Commands

connection
server

command
processor

command
reader/

executor
client

C
H

O
W

N

O
K

ATTACK

X

• Command reader sandboxed
• Not root
• Handles most commands
• Except few requiring privilege

• Comm. proc. only talks to reader
• And, again, white-lists its limited input

Attack: Cross-session

connection
server

client 2

client 1

Attack: Cross-session

connection
server

client 2

client 1
command
processorcommand

reader/
executor

Attack: Cross-session

connection
server

command
processorcommand

reader/
executor

client 2

client 1
command
processorcommand

reader/
executor

Attack: Cross-session

connection
server

command
processorcommand

reader/
executor

client 2

client 1
command
processorcommand

reader/
executor

Attack: Cross-session

connection
server

command
processorcommand

reader/
executor

client 2

client 1
command
processorcommand

reader/
executor

CMD

CMD

Attack: Cross-session

connection
server

command
processorcommand

reader/
executor

client 2

ATTACKX
• Each session isolated

• Only can talk to one client

client 1
command
processorcommand

reader/
executor

CMD

CMD

Separation of responsibilities

Separation of responsibilities

Separation of responsibilities

Separation of responsibilities

TCB: KISS

Separation of responsibilities

TCB: KISS

Separation of responsibilities

TCB: KISS

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Principle of least privilege

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Principle of least privilege

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Principle of least privilege

Separation of responsibilities

Kerkhoff’s principle!

TCB: KISS

TCB: Privilege separation

Principle of least privilege

Reasoning about  
code safety

Reasoning about code safety

Reasoning about code safety
• Goal: Confidence that our code is safe and correct

Reasoning about code safety
• Goal: Confidence that our code is safe and correct

Reasoning about code safety
• Goal: Confidence that our code is safe and correct

• Approach: Build up this confidence function by function, module by module

Reasoning about code safety
• Goal: Confidence that our code is safe and correct

• Approach: Build up this confidence function by function, module by module

Reasoning about code safety
• Goal: Confidence that our code is safe and correct

• Approach: Build up this confidence function by function, module by module

• Modularity provides boundaries for our reasoning

Reasoning about code safety
• Goal: Confidence that our code is safe and correct

• Approach: Build up this confidence function by function, module by module

• Modularity provides boundaries for our reasoning

• Preconditions: what must hold to be correct (“REQUIRES”)
• Postconditions: what holds after the function (“ENSURES”)

Reasoning about code safety
• Goal: Confidence that our code is safe and correct

• Approach: Build up this confidence function by function, module by module

• Modularity provides boundaries for our reasoning

• Preconditions: what must hold to be correct (“REQUIRES”)
• Postconditions: what holds after the function (“ENSURES”)

Reasoning about code safety
• Goal: Confidence that our code is safe and correct

• Approach: Build up this confidence function by function, module by module

• Modularity provides boundaries for our reasoning

• Preconditions: what must hold to be correct (“REQUIRES”)
• Postconditions: what holds after the function (“ENSURES”)

• Think of it as a contract for using the module
• “Statement 1’s postcondition should meet statement 2’s precondition”

Reasoning about code safety
• Goal: Confidence that our code is safe and correct

• Approach: Build up this confidence function by function, module by module

• Modularity provides boundaries for our reasoning

• Preconditions: what must hold to be correct (“REQUIRES”)
• Postconditions: what holds after the function (“ENSURES”)

• Think of it as a contract for using the module
• “Statement 1’s postcondition should meet statement 2’s precondition”

• Invariant = Conditions that always hold within some part of a function

What are the preconditions to ensure safety?

/* requires: p != NULL (and p is a valid pointer) */
/* ensures: retval is the first four bytes p pointed to */

int deref(int *p) {
 return *p;
}

What are the preconditions to ensure safety?

/* requires: p != NULL (and p is a valid pointer) */
/* ensures: retval is the first four bytes p pointed to */

int deref(int *p) {
 return *p;
}

What are the postconditions to ensure safety?

/* ensures: retval != NULL (and a valid pointer) */

void *myalloc(size_t n) {
 void *p = malloc(n);
 if (!p) { perror(“malloc”); exit(1); }  
 return p;
}

What are the postconditions to ensure safety?

/* ensures: retval != NULL (and a valid pointer) */

void *myalloc(size_t n) {
 void *p = malloc(n);
 if (!p) { perror(“malloc”); exit(1); }  
 return p;
}

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i */

/* requires: a != NULL */

/* requires: i < size(a) */

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i */

/* requires: a != NULL */

/* requires: i < size(a) */

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i */

/* requires: a != NULL */

/* requires: i < size(a) */

No line of code above this  
guarantees it will hold:  

so move it up

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i */

/* requires: a != NULL */

/* requires: i < size(a) */

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i */

/* requires: a != NULL */

/* requires: i < size(a) */

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: 0 <= i */

/* requires: a != NULL */

/* requires: i < size(a) */

Line above it: size_t i
ensures that 0 <= i always

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: a != NULL */

/* requires: i < size(a) */

Line above it: size_t i
ensures that 0 <= i always

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: a != NULL */

/* requires: i < size(a) */

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: a != NULL */

/* requires: i < size(a) */

Not guaranteed by above code

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: a != NULL */

/* requires: i < size(a) */

Not guaranteed by above code

/* requires: n <= size(a) */

What are the preconditions to ensure safety?

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)  
 total += a[i];  
 return total;
}

Approach:
 1. Identify each memory access  
 2. Annotate with preconditions it requires  
 3. Propagate the requirements up

Memory  
access

/* requires: a != NULL */

/* requires: n <= size(a) */

char *tbl[N]; /* N is of type int */

/* requires: s != NULL and valid, and NULL-terminated */
/* ensures: 0 <= retval < N */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;  
 return h % N;
}

/* requires: s != NULL (and a valid) and 0 <= hash < size(tbl) */
bool search(char *s) {
 int i = hash(s);  
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

char *tbl[N]; /* N is of type int */

/* requires: s != NULL and valid, and NULL-terminated */
/* ensures: 0 <= retval < N */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;  
 return h % N;
}

/* requires: s != NULL (and a valid) and 0 <= hash < size(tbl) */
bool search(char *s) {
 int i = hash(s);  
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

char *tbl[N]; /* N is of type int */

/* requires: s != NULL and valid, and NULL-terminated */
/* ensures: 0 <= retval < N */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;  
 return h % N;
}

/* requires: s != NULL (and a valid) and 0 <= hash < size(tbl) */
bool search(char *s) {
 int i = hash(s);  
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

char *tbl[N]; /* N is of type int */

/* requires: s != NULL and valid, and NULL-terminated */
/* ensures: 0 <= retval < N */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;  
 return h % N;
}

/* requires: s != NULL (and a valid) and 0 <= hash < size(tbl) */
bool search(char *s) {
 int i = hash(s);  
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

char *tbl[N]; /* N is of type int */

/* requires: s != NULL and valid, and NULL-terminated */
/* ensures: 0 <= retval < N */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;  
 return h % N;
}

/* requires: s != NULL (and a valid) and 0 <= hash < size(tbl) */
bool search(char *s) {
 int i = hash(s);  
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Does this code meet its postconditions?

char *tbl[N]; /* N is of type int */

/* requires: s != NULL and valid, and NULL-terminated */
/* ensures: 0 <= retval < N */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;  
 return h % N;
}

/* requires: s != NULL (and a valid) and 0 <= hash < size(tbl) */
bool search(char *s) {
 int i = hash(s);  
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Need to change int to unsigned intDoes this code meet its postconditions?

Why use pre & postconditions?
• Serves as documentation

• It allows modular reasoning: you can verify f() by only looking at
• The code of f()
• The annotations on every function that f() calls

• Thus, reasoning about a function’s safety becomes an (almost)
purely local activity

• This is related to defensive programming:
• Ideally: preconditions are the assumptions we make
• Practically: they’re constraints that honest clients are expected to follow

