414-S17 Crypto

Shankar

April 18, 2017

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

Overview overview

m Crypto is everywhere
= communications: https, IPsec, 802.11, WPA2, ...
n files on disk: Bitlocker, FileVault, ...
» user authentication: Kerberos, ...

m Crypto enables secure data communication and storage

= Confidentiality: only the intended receiver can read the data
» Integrity: the intended receiver detects any changes to the data
= Authentication: data received was sent by the specified sender

= Non-repudiation: third party can verify that the data was sent
by the specified sender

Symmetric and Asymmetric Crypto overview

m Key generation: generate encryption and decryption keys
m Encryption E: plaintext + encryption key — ciphertext

m Decryption D: plaintext «— ciphertext 4+ decryption key

m Symmetric crypto

= encryption key = decryption key
= eg, AES, MD5, SHA-1, SHA-256, ...
= fast

m Asymmetric (aka public-key) crypto

= encryption key # decryption key
= eg, RSA, DH, DSS, ...
= very slow

Desired properties of crypto functions overview

m Correctness
» For any encryption key keyr and its decryption key keyp:
if E(keyg, ptxt) returns ctxt then D(keyp, ctxt) returns ptxt

m Security: Assuming keys are chosen uniformly randomly

= Given cyphertext, hard to get plaintext.
= Given plaintext and ciphertext, hard to get key.
= Hard: requires brute-force search of key-space (eg, 2'%® keys)

m Attacker models (from weakest to strongest)

» Ciphertext-only attack

= Known plaintext attack: one matching pair

= Chosen plaintext attack: encryption oracle

» Chosen ciphertext attack: encryption oracle + decryption oracle

Achieving secure communication overview

m A and B separated by insecure channel, share secret key k.

m Confidentiality:
= A sends E(k, plaintext)
= B receives and does D(k, ciphertext)

m Integrity:
» mac: E(k, hash(plaintext))
= A sends [plaintext, mac]
= B receives and verifies mac

m Authentication:
= A sends a random ra to B, and expects E(k, ra) back
= B sends a random rg to A, and expects E(k, rg) back

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

block cipher -

|deal block cipher block cipher 'symm

m Fixed-size messages of d bits (eg, 64, 128)

m Fixed-size keys of k bits (eg, 128, 256)
= any random k bits is a valid key

m Encryption E : d-bit msg + k-bit key — d-bit output
m To decrypt, E must be 1-1 mapping of msgs to outputs

m To be secure, E must be “random”
» E(key, msg) gives no information about key or msg

= Msgs and keys that differ (even if only slightly)
map to outputs that differ randomly

m Key size k large enough so that searching 2 is infeasible

m Clearly, E cannot be a “simple” function, eg, msg & key

Implementation: d-bit data, k-bit key block cipher 'symm

m Naive approach
= Table of a random permutation of d-bit strings /29 x d bits
» E(i) is ith row of table
= Secure but impractical // table itself is the key!

m Practical approach: localized scrambling and global permutations
= Generate n “round keys” from the key // n small, eg, 10
= Repeat n times

Partition d-bit string into p-bit chunks ~ // 2P is manageable

Scramble each p-bit chunk using 2P x p tables
// table's permutation depends on round-n key

Permute the resulting d-bit string

= Decryption is similar // often reuse same hardware

Exam DES: Data Encryption Standard block cipher 'symm

m Old standard no longer used: 56-bit keys, 64-bit text

rounds
1, 2,

DES Encryption

‘ 64-bit input |
linitial permutation 56-bit key
generate 16
s H R(n R 48-bit keys

K1, K2, ..., K16
Mangler
use Kn for round n

L(n)

R(n)

J final permutation (inverse of initial)

| 64-bit output ‘

Exam DES encryption and decryption block cipher ‘symm

DES encryption

al: Ly | Ry < perm(pt)

a2:forn = 0,..., 15

a3: LI7+1 — Rn

ad: R,y1 < mnglry(Ra, Kny1)®L,
/ ylelds L16 | R16

ab: L17 | R17 — R16 | L16
ab: ct + perm (R | Lis)

/ key order: Kl, e, K16

DES decryption

bl: Rig | Lig « perm(ct) // a6 bw
b2: forn = 15,...,0 // a2 bw
b3: R, < L, // a3 bw

bd: L, < mnglry(Rn, Kn)®Rni1 / ad bw
/I sets L, to X such that
/I Ror1 < mnglry(R,, K,)®X
/ ylelds RO“—O

b5: L0|R0 — R()|L0 // a5 bw
b6: pt < perm~(Lo|Ro) // al bw
/ key order K16, ey, Kl

Exam Multiple DES: EDE or 3DES block cipher 'symm

m Makes DES more secure

= Encryption: encrypt keyl — decrypt key2 — encrypt keyl
» Decryption: decrypt keyl — encrypt key2 — decrypt keyl

m encrypt keyl — encrypt keyl is not effective
= Just equivalent to using another single key.

m encrypt keyl — encrypt key2 is not so good

AES: Advanced Encryption Standard block cipher 'symm

m Current standard encryption algorithm
m Different key sizes: 128, 192, 256
m Data block size: 128 bits

m Algorithm overview Exam
» 10, 12, or 14 rounds /I depending on key size
= Round keys generated from the cipher key
= Data block treated as 4 x 4 matrix of bytes
= Each round involves operations in a finite field

= permutation of the bytes // lookup table
= cyclic shifting of rows
= mixing bytes in each column

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

Handling variable-size messages modes symm

m Encrypting variable-size msg given d-bit block cipher

= Pad message to multiple of block size:
msg — m,my,---

= Use block encryption repeatedly to get ciphertext

my, my, .- — CQ,C,
m Desired
= Cj # ck even if mj=my /I like block encryption

= Repeated encryptions of msg yield different ciphertxt
/I unlike block encryption

m Various modes: ECB, CBC, CFB, OFB, CTR, others

ECB: Electronic Code Book modes 'symm

m Encryption: my,my,--- — ¢,0,- -

m Natural approach: encrypt each block independently
m Encryption: ¢; = E(key, mj)
m Decryption: m; = D(key, cj)

m Not good: repeated blocks get same cipherblock

m Never use ECB
= Amazingly, the default mode for some crypto libraries

CBC: Cipher Block Chaining modes symm

m Encryption: my,my,--- — ¢,06, -

m Use ¢; _ 1 as a “random” pad to m; before encrypting.

= ¢ < random [V
M, M M,
m cj < E(key, mi®cj_1) f f |
lsend IV,C]_7C2,"' IV_’@ (23] s D cs e
= Can be attacked if EK\/;EK\/ /E(K\/
IV is predictable C, C, C. C,
m Decryption: ¢, ¢,--+ — my,mp,---

s mj < D(key,c;)®cj_1 fori=1,2,.--
= Can be done in parallel

OFB: Output Feedback Mode modes symm

m Encryption: my,my,--- — ¢,0,- -

m Generate pad by, by, - -:
= by < random [V
= bj < E(key,bj —1)

mCj < bjdmj

m One-time pad that can be generated in advance.
m attacker with <plaintxt, ciphertxt> can obtain b;’s.

CFB: Cipher Feedback Mode

m Like OFB except that output ¢; _ 1 is used instead of b;
mcgislV
wcj < mj® E(key,cj _1)

m Cannot generate one-time pad in advance.

CTR: Counter Mode modes -

Counter mode (CTR)

v
Iml% Imzlf El? ?
] [e] [e] [e] [e]

Ciphertext

<

Decrypt? mi = D(k,IV+i) XOR c;

CTR modes 'symm

m Like OFB, can encrypt in parallel

m Initial /V must be random
= Don't use IV for one msg and /V + 1 for another msg

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

MAC: Message Authenication Code mac 'symm

m A MAC detects any change to a msg // integrity
m Signing S: msg + key — tag // send msg, tag

m Verification V: msg + tag + key — YES or NO
= YES iff msg was exactly that sent by key holder

m A MAC is secure if an attacker (w/o key)

= can issue msgs my, my, --- and get their tags t;, t,, - -+ but
still cannot produce the valid tag t for any new msg m
/I Existential forgery

m MACs currently used: ECBC, SHA, SHA-3, others

MACs from Block Ciphers

MACs from Block Ciphers mac symm

m Encrypting msg (eg, CBC, CFB, OFB) does not provide integrity
= Modified ciphertext still decrypts to something

m Encrypted CBC (ECBC): yields a MAC from a block cipher
m Signing S
s Input: msg, key, key’'
= Apply CBC on msg using key and no IV 71V =0

= Only the last cipherblock, say c, is needed
n tag = E(key’, ¢)

m Verifying V
= Input: msg, key, key’, tag
w YES iff S(msg, key, key’) equals tag

ECBC vs CBC mac symm

m Output only one block /I coz not recovering plaintext

m Need two keys, otherwise attacker
m issues msg [my, -+, m,|, gets tag t = ¢,
= creates single-block msg ', gets tag t’ for t & m’

1

= t' is valid tag for m||m’ /|| is concatenation

m Both CBC and ECBC must be computed sequentially
» There are CTR-like MACs which permit parallel computation

m Would using only one key with a random IV work?
= msg's tag is last cipherblock of CBC(key, IV ||msg)

MACs from Hash Functions

Hashes mac symm

m Hash function H
= arbitrary message — k-bit hash
(pre-image) (digest)
= msg space >> hash space (= 2K) // not 1-1
= Does not take a key as input

m H is cryptographically secure if // “‘one-way"
= Pre-image resistant: hard to find m given H(m)
= Collision-resistant: hard to find m # m’ s.t. H(m) = H(m')

= In fact, for any m # m', the probability that H(m) and H(m')
are equal at any given bit index i is 1/2

How large for collision-resistance mac 'symm

m Assuming H is random, how large should k be?

m Pr(collision in N random msgs my,--- , my)
= Pr[H(my) = H(my) or H(my) = H(m3) or ---]
~ N(N —1)/2 x (1/2K)
~ N2/2k

m Prsignificant if N2 =~ 2K e if N ~ V/2k

m Choose k so that searching through v/2K msgs is hard

= So k = 128 assumes searching through 2% msgs is hard

Some current secure hash functions mac symm

m MD5 (Message digest 5): 128-bit digest
= Known collision attacks, still frequently used

m SHA family
s SHA-1: 160-bit hash // theoretically broken, but used
= SHA-256: 256-bit hash
= SHA-512
m etc

m SHA-3 (224, 256, 385, 512) // standardized Aug 2015

Exam Internals of MD4 (128-bit hash) mac symm

m Step 1: Pad msg to multiple of 512 bits
= pmsg < msg|one 1| p 0's| (64-bit encodng of p) / pin 1..512

m Step 2: Process pmsg in 512-bit chunks to get hash md

» treat 128-bit md as 4 words: dy, dy, db, ds
= initialize to 01]23|...|89|ab|cd|ef|fe|dc|...|10

= For each successive 512-bit chunk of pmsg:

= treat 512-bit chunk as 16 words: mg, my,--- , M5
€..63 < dy..d3 /| save for later
pass 1 using mangler H1 and permutation J

/| for I:O,,15 d_j(,') — Hl(i,do,dl,dg,d3,mi)

pass 2: same but with mangler H2
pass 3: same but with mangler H3
do..d3 — do..d3 D g..e3
m md < do..d3

MACs from hash functions mac symm

m MAC of a msg is a hash of some combination of msg and key
= MAC(msg) = H(key, msg)

m But need to be careful in how key and msg are combined

m In particular, key||msg is not good /' “||" is concatenation

= This is because usually H(my || my) is H(H(my) || my)

= Given a msg m; and H(key || my), attacker can get
H(key || my || my) by doing H(H(key, m) || my)

HMAC: Hash—I\/IAC mac symm

m HMAC: standard way to get MACs from Hashes
m HMAC takes any hash function H and any size key

m HMAC (key, msg, H)
= H((key' @ opad) || H((key' & ipad) || msg))
» key’' < key padded with 0's to H's input block size
if key size > H's block size, first hash key
m opad = 0x5chc...5¢c of H's block size // outer padding
m jpad = 0x3636...36 of H's block size // inner padding

Aside: Keyed-hash = Block Cipher mac 'symm

m Encryption: my,my,--- — ¢, ¢, G,
= Generate pad: b; <— H(key,bj _ 1) where By is IV
mCj < bj®my
msend IV, ¢, 6, -

m Decryption identical

QOutline mac + encrypt -

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

Integrity and confidentiality mac + encrypt symm

m Encrypt || MAC: send E(msg) || MAC(msg)

» MAC(msg) may reveal something about msg
» Do not use

m MAC then Encrypt: send E(msg || MAC(msg))
= Can be insecure for some E and MAC combinations
= Do not use

m Encrypt then MAC: send E(msg) || MAC(E(msg))

= MAC may reveal something of ciphertext, but that's ok
= Use this

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

Asymmetric Crypto: Encryption intro asymm

m Key generation
= Input: source of randomness and max key length L
= Output: pair of keys, each of size < L

= pk: “public’ key // publicly disclosed
u sk: “secret (aka “private”) key // shared with no one
m Encryption Ep(pk, m) /I executed by public

= Input: public key pk; msg m (size < L)
= Add random pad to m // PKCS, OAEP
= Output: ciphertext ¢ (size < L)

m Decryption Dp(sk, c) /] executed by sk owner
= Input: secret key sk; ciphertext ¢ (size < L)
= Output: original msg m

Asymmetric Crypto: Encryption intro asymm

m Key pair [pk, sk]

m Correctness
» Dp(sk, Ep(pk, m)) = m

m Security
» Ep(pk, m) appears random // one-way
= Can only be decrypted with sk /I trapdoor

» Hard to get sk from pk

m Hybrid encryption for arbitrary-size msg m
generate symmetric key k

symmetric encrypt m: ¢, = E(k, m)
public-key encrypt k: ¢y = Ep(pk, k)
send [¢m, ck]

Asymmetric Crypto: Signatures intro asymm

m Key generation: public key pk, secret key sk // as before

m Signing Sgn(sk, m) /I executed by sk owner
= Input: secret key sk; msg m (size < L)
= Output: signature s (size < L)

m Verification function Vfy(pk, m,s) /I executed by public
s Input: public key pk; msg m, signature s
= Output: YES iff s is a valid signature of m using sk

m Correctness: Vfy(pk, m, Sgn(sk,m)) = YES

m Security: Even with pk and many [msg, sgn] examples, cannot
produce existential forgery

Asymmetric Crypto Examples intro asymm

m RSA, ECC: encryption and signatures
m ElGamal, DSS: signatures

m Diffie-Hellman: establishment of a shared secret

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

De-mystifying asymmetric crypto theory asymm

m Asymmetric crypto is based on modulo-n arithmetic

m |t seems magical. but it can be de-mystified with a bit of effort

m What follows is brief look at some number theory
» Prime numbers
= Modulo-n addition, multiplication and exponentiation
= Euler’s totient function and a theorem

Prime numbers theory 'asymm

m Integer p is prime iff it is exactly divisible only by itself and 1.

m gcd(p, q): greatest common denominator of integers p and ¢
» Largest integer that divides both exactly.

m p and q are relatively prime iff gcd(p, q) =1

m Infinitely many primes, but they thin out as numbers get larger
m 25 primes less than 100
= Pr[random 10-digit number is a prime] ~ 1/23
= Pr[random 100-digit number is a prime] ~ 1/230
= Pr[random k-digit number is a prime] ~ 1/(k-In 10)

Modulo-n operator theory 'asymm

nZ,={0,1,--- ,n—1}

m Modulo-n: integers — Z, // includes negative integers

® x mod-n for any integer x
= y in Z, st x=y+ k-n for some integer k
= non-negative remainder of x/n

m Examples
= 3 mod-10 =3 /I 3=3+0-10
= 23 mod-10 =3 /23 =3+210
= —27 mod-10 = 3 /=27 =3+ (=3)-10

Note: mod-n of negative number is non-negative

Modulo-n addition theory 'asymm

m (a+ b) mod-n for any integers a and b

m Examples
= (3+7) mod-10 = 10 mod-10 = 0
= (3—7)mod-10 = —4 mod-10 = 6

m Additive-inverse-mod-n of x // aka —x mod-n
my st (x+y)modn=0 // st: such that

= exists for every x

= easily computed: (n — x) mod-n

Modulo-n multiplication theory 'asymm

m (a-b) mod-n for any integers a and b

m Examples
= (3:7) mod-10 = 21 mod-10 = 1 /" is multiplication
» 8:(—7) mod-10 = —56 mod-10 = 4

m Multiplicative-inverse-mod-n of x // aka x~! mod-n
my st (xy)mod-n=1
m exists iff ged(x,n) =1 /I x relatively prime to n
= Easily computed by Euclid’s algorithm /| Exam

s« Euclid(x,n) returns u, v st gecd(x,n) = u-x+ v-n

1 1

u if ged(x,n) = 1: ’u =x_ mod—n‘ and ’v = n"" mod-x

Modulo-n exponentiation theory 'asymm

= (ab) mod-n for any integer a and integer b > 0

m Examples
m 32 mod-10 = 9
= 32 mod-10 = 27 mod-10 = 7
s (=3 mod-10 = — 27 mod-10 = 3

m Exponentiative-inverse-mod-n of x
my st (x¥)mod-n=1
w exists iff ged(x,n) =1
m easily computed given prime factors of n // only way known

Euler's Totient Function theory 'asymm

mZ, = {xinZ,, gcd(x,n) =1} Iz = {1,3,7,9}
m ¢(n): number of elements in Z,* I $(10) = 4

m Euler's Totient Function / Exam

n—1 if n prime
on) = ~1 T .
(p— 1) pe if n=pa, pprime, a>0
(plal) (b(pKaK) ifn:p131...pKaK

m If p, g distinct primes: ¢(p-q) = (p—1) (¢ —1)

Euler's Theorem

Euler's Theorem:

If n= p- g for distinct primes p and g, then
alk-¢(n) +1) mod-n = a mod-n

for any aand kK >0

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

RSA RSA ‘asymm

m RSA: Rivest, Shamir, Adleman

m Key size variable and much longer than secret keys
m at least 1024 bits (250 decimal digits)

m Data block size is variable but smaller than key size
m Ciphertext block is same size as key size.

m Orders slower than symmetric crypto algorithms (eg, AES)

= So use hybrid encryption for large messages

RSA: Generating [public key, private key| pair RSA asymm

m Choose two large primes, p and g // keep p and g secret
m Let n=pgq

m Choose e relatively prime to ¢(n) N o(n)=(p—1)(g—1)
m Public key = [e, n] /I make this public
m Let d = mult-inverse-mod-¢(n) of e /I e-d mod-¢(n) = 1
m Private key = [d, n] /I keep d secret

RSA: Encryption and Decryption RSA asymm

m Encryption of message msg using public key

= m < add random pad to msg // PKCS, OASP
= ciphertext ¢ < m€ mod-n

m Note:
= PKCS and OASP are padding standards
= m must be less than n

m Decryption of ciphertext ¢ using private key
u plaintext m + ¢4 mod-n # coz med mod-n = m
m msg < remove pad from m

Why is me€-d equal to m (mod-n) RSA asymm

s med mod-n

= ml+k¢(n) mod-n for some k /I e-d mod-¢(n) = 1
= m mod-n /I Euler’s theorem
= m /- min Z,

RSA: Signing and Verifying RSA asymm

m Signing message msg using private key
= m < add pad to msg // PKCS
= signature s < md mod-n

m Verifying signature s using public key
= m <+ s€ mod-n / coz med mod-n = m
s YES iff m equals msg with pad

Why RSA is believed to be secure RSA asymm

m Only known way to obtain m from x = m€ mod-n
is by xd mod-n where d = e~! mod-¢(n)

m Only known way to obtain ¢(n) is with p and g

m Factoring number is believed to be hard,
so hard to obtain p and q given n

= Best current algorithms: exp(n.len'/?)
= Currently n.len of 1024 for OK security
» Use n.len of 2048 to be sure

» Decade: n.len of 3072 to be sure

RSA requires efficient modulo exponentation RSA asymm

m RSA operations (encrypt, decrypt, etc) require computing
m€ mod-n for large (eg, 200-digit) numbers m, e, n

m Simple approach is not feasible
= Multiply m with itself, take mod n; repeat e times.
= e multiplications and divisions of large numbers.

m Much better:
u Exploit m2X = mX-mX and m2x +1=m2x. p

= log e multiplications and divisions

Exam Modulo_Exponentiation(m, e, n) RSA asymm

m (x0,X1, - ,Xk) < ein binary I x=1
minitially y < m; j < 0 /Iy =mXo
m while j < k

= // loop invariant: y = m(X0;*** ,X;) mod-n

my < y-y mod-n; 7y =m0, %,0) mod-n

mifxj =1

y < y-mmod-n Vi y:m(XOv"' ,%,1) mod-n
mj — j+1 //y:m(Xoa"'vxj)mod—n

m / y =m€ mod-n

Exam Example: 123°* mod-678 RSA asymm

54 in binary is (1101110),
1231 mod-678 = 123

(
12319 mod-678 = 123-123 mod-678 = 15129 mod-678 = 213
12311 mod-678 = 213-123 mod-678 = 26199 mod-678 = 435
123(119) mod-678 = 435-435 mod-678 = 1889225 mod-678 = 63
123(1190) m0d-678 = 63-63 mod-678 = 3969 mod-678 = 579
123110 mod-678 = 579-123 mod-678 = 71217 mod-678 = 27
123(11010) ;m6d-678 = 27-27 mod-678 = 729 mod-678 = 51
123(11011) mod-678 = 51-123 mod-678 = 6273 mod-678 = 171
123(110110) 1364-678 = 171-171 mod-678 = 29241 mod-678 = 87

RSA key generation is very expensive RSA asymm

m There are two parts to RSA key generation
= Finding big primes p and ¢
= Finding e relatively prime to ¢(p-q) /N =(p-1)(¢g—-1)

= Note: given e, easy to obtain d = e~! mod-¢(n)

Finding a big prime n RSA asymm

m Choose random n and test for prime. If not prime, retry.

m No practical deterministic test.

m Simple probabilistic test
= Generate random n and random ain 1..n
m Pass if a7 ! mod-n = 1 /| converse to Euler's theorem
= Prob failure is low / ~ 10713 for 100-digit n
= Can improve by trying different a's.
= But Carmichael numbers: 561,1105, 1729, 2465, 2821, 6601, - - -

m Miller-Rabin probabilistic test
s Better and handles Carmichael numbers

Finding e relatively prime to p - g RSA asymm

m Approach 1

= Choose random primes p and g as described above
» Choose e at random until e relatively prime to ¢(p.q)

m Approach 2

= Fix e st m® easy to compute (i.e., few 1's in binary)
= Choose random primes p and g st e relatively prime to ¢(p.q)
= Common choices
se=2'4+1=3 // m® requires 2 multiplications
we=2%141=65537 // m® requires 17 multiplications

PKCS: Public Key Cryptography Standard RSA asymm

m PKCS #1 v1.5
= Defines padding of msg being encrypted/signed in RSA
= Padded msg is 1024 bits

m Encryption (fields are octets)

| 0] 2] > eight random non-zero octets | 0 | data |

m Signing (fields are octets)
n| 0] 1] > eight 9F octets | O | digest type and digest |

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

DH: Diffie-Helman

DH asymm

m Establishes a key over open channel without a pre-shared secret

m Inputs (public): prime p and generator g for p

=1 <g<pstg! mod-prangesoverl,--- p—1
m Protocol

Alice Bob

choose random x

A + gX mod-p

send A choose random y
B < g¥ mod-p
send B

K < AY mod-p
K < BX mod-p

m Alice K = Bob.K = gX Y mod-p /I shared key

Why is DH secure DH asymm

m Hard to get gX'¥ mod-p from p, g, gX and g¥
= Multiplying gX and gV yields gX+¥ // not useful
= Hard to get x from gX mod-p // Discrete-log problem
= Hard to get y from g¥ mod-p

DH does not authenticate DH asymm

m DH allows two principals who share nothing to establish a shared
secret over an insecure channel

m DH does not authenticate the principals to each other
= Alice may be talking to Trent claiming to be Bob

m For authentication, principals must already share something, eg:
= Alice and Bob share a secret symmetric key
» Alice and Bob each have the other’s public key
= Alice and Bob each share a key with a trusted third party
= it generates a new key and sends it securely to Alice and Bob
= it securely sends the public keys of Alice and Bob to the other

Authenticated DH using pre-shared keys DH asymm

m DH that incorporates a pre-shared key to provide authentication

m Suppose Alice and Bob share a secret symmetric-crypto key k
m Can do authenticated DH by using k to encrypt the DH msgs
» Alice sends E(k, gX mod-p)
= Bob sends E(k, g¥ mod-p)
w If principals are Alice and Bob: get shared key (gX'Y mod-p)
Otherwise the principals would not achieve a shared key, so ok

m Can do similar authenticated DH if Alice and Bob have each
other’s public key

Why do DH given pre-shared secret DH asymm

m If Alice and Bob share a secret key k, they can achieve secure
communication simply by encrypting msgs with k

m What is gained by using k to do authenticated DH

= The DH key would be strong whereas k may be weak (eg,
obtained from a password)

» Perfect-forward secrecy: If they forget their DH private keys
after their session, then the session data remains secure even if
k is later exposed

	Overview
	Symmetric Crypto
	Block Cipher
	Encryption Modes for Variable-size Messages
	Message Authentication Codes (MACs)
	MAC and Confidentiality

	Asymmetric Crypto (aka Public-Key Crypto)
	Introduction
	A Little Bit of Number Theory
	RSA
	Diffie-Helman

