
414-S17 Crypto

Shankar

April 18, 2017

Outline overview

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

Overview overview

Crypto is everywhere

communications: https, IPsec, 802.11, WPA2, ...

�les on disk: Bitlocker, FileVault, ...

user authentication: Kerberos, ...

. . .

Crypto enables secure data communication and storage

Con�dentiality: only the intended receiver can read the data

Integrity: the intended receiver detects any changes to the data

Authentication: data received was sent by the speci�ed sender

Non-repudiation: third party can verify that the data was sent
by the speci�ed sender

Symmetric and Asymmetric Crypto overview

Key generation: generate encryption and decryption keys

Encryption E : plaintext + encryption key −→ ciphertext

Decryption D: plaintext ←− ciphertext + decryption key

Symmetric crypto

encryption key = decryption key
eg, AES, MD5, SHA-1, SHA-256, ...
fast

Asymmetric (aka public-key) crypto

encryption key 6= decryption key
eg, RSA, DH, DSS, ...
very slow

Desired properties of crypto functions overview

Correctness

For any encryption key keyE and its decryption key keyD :

if E (keyE , ptxt) returns ctxt then D(keyD , ctxt) returns ptxt

Security: Assuming keys are chosen uniformly randomly

Given cyphertext, hard to get plaintext.
Given plaintext and ciphertext, hard to get key.
Hard: requires brute-force search of key-space (eg, 2128 keys)

Attacker models (from weakest to strongest)

Ciphertext-only attack
Known plaintext attack: one matching pair
Chosen plaintext attack: encryption oracle
Chosen ciphertext attack: encryption oracle + decryption oracle

Achieving secure communication overview

A and B separated by insecure channel, share secret key k .

Con�dentiality:

A sends E (k , plaintext)

B receives and does D(k , ciphertext)

Integrity:

mac : E (k , hash(plaintext))

A sends [plaintext,mac]

B receives and veri�es mac

Authentication:

A sends a random rA to B , and expects E (k , rA) back

B sends a random rB to A, and expects E (k , rB) back

Outline symm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

Outline block cipher symm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

Ideal block cipher block cipher symm

Fixed-size messages of d bits (eg, 64, 128)

Fixed-size keys of k bits (eg, 128, 256)

any random k bits is a valid key

Encryption E : d-bit msg + k-bit key −→ d-bit output

To decrypt, E must be 1-1 mapping of msgs to outputs

To be secure, E must be �random�

E (key ,msg) gives no information about key or msg

Msgs and keys that di�er (even if only slightly)
map to outputs that di�er randomly

Key size k large enough so that searching 2k is infeasible

Clearly, E cannot be a �simple� function, eg, msg ⊕ key

Implementation: d -bit data, k-bit key block cipher symm

Naive approach

Table of a random permutation of d-bit strings // 2d × d bits

E (i) is ith row of table

Secure but impractical // table itself is the key!

Practical approach: localized scrambling and global permutations

Generate n �round keys� from the key // n small, eg, 10

Repeat n times

Partition d-bit string into p-bit chunks // 2p is manageable

Scramble each p-bit chunk using 2p × p tables
// table's permutation depends on round-n key

Permute the resulting d-bit string

Decryption is similar // often reuse same hardware

Exam DES: Data Encryption Standard block cipher symm

Old standard no longer used: 56-bit keys, 64-bit text

Exam DES encryption and decryption block cipher symm

DES encryption

a1: L0 | R0 ← perm(pt)
a2: for n = 0, ..., 15

a3: Ln+1 ← Rn

a4: Rn+1 ← mnglrn(Rn,Kn+1)⊕Ln
// yields L16 | R16

a5: L17 | R17 ← R16 | L16
a6: ct ← perm−1(R16 | L16)

// key order: K1, · · · , K16

DES decryption

b1: R16 | L16 ← perm(ct) // a6 bw

b2: for n = 15, ..., 0 // a2 bw

b3: Rn ← Ln+1 // a3 bw

b4: Ln ← mnglrn(Rn,Kn)⊕Rn+1 // a4 bw

// sets Ln to X such that

// Rn+1 ← mnglrn(Rn,Kn)⊕X
// yields R0|L0

b5: L0|R0 ← R0|L0 // a5 bw

b6: pt ← perm−1(L0|R0) // a1 bw

// key order K16, · · · , K1

Exam Multiple DES: EDE or 3DES block cipher symm

Makes DES more secure

Encryption: encrypt key1 → decrypt key2 → encrypt key1
Decryption: decrypt key1 → encrypt key2 → decrypt key1

encrypt key1 → encrypt key1 is not e�ective

Just equivalent to using another single key.

encrypt key1 → encrypt key2 is not so good

AES: Advanced Encryption Standard block cipher symm

Current standard encryption algorithm

Di�erent key sizes: 128, 192, 256

Data block size: 128 bits

Algorithm overview Exam

10, 12, or 14 rounds // depending on key size

Round keys generated from the cipher key

Data block treated as 4× 4 matrix of bytes

Each round involves operations in a �nite �eld

permutation of the bytes // lookup table
cyclic shifting of rows
mixing bytes in each column

Outline modes symm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

Handling variable-size messages modes symm

Encrypting variable-size msg given d-bit block cipher

Pad message to multiple of block size:
msg −→ m1,m2, · · ·
Use block encryption repeatedly to get ciphertext
m1,m2, · · · −→ c1, c2, · · ·

Desired

cj 6= ck even if mj = mk // like block encryption

Repeated encryptions of msg yield di�erent ciphertxt
// unlike block encryption

Various modes: ECB, CBC, CFB, OFB, CTR, others

ECB: Electronic Code Book modes symm

Encryption: m1,m2, · · · −→ c1, c2, · · ·

Natural approach: encrypt each block independently

Encryption: ci = E (key ,mi)

Decryption: mi = D(key , ci)

Not good: repeated blocks get same cipherblock

Never use ECB

Amazingly, the default mode for some crypto libraries

CBC: Cipher Block Chaining modes symm

Encryption: m1,m2, · · · −→ c1, c2, · · ·

Use ci − 1 as a �random� pad to mi before encrypting.

c0 ← random IV

ci ← E (key ,mi⊕ci−1)
send IV , c1, c2, · · ·
Can be attacked if
IV is predictable

Decryption: c1, c2, · · · −→ m1,m2, · · ·
mi ← D(key , ci)⊕ ci−1 for i = 1, 2, · · ·
Can be done in parallel

OFB: Output Feedback Mode modes symm

Encryption: m1,m2, · · · −→ c1, c2, · · ·
Generate pad b0, b1, · · · :
b0 ← random IV

bi ← E (key , bi − 1)

ci ← bi ⊕mi

One-time pad that can be generated in advance.

attacker with <plaintxt, ciphertxt> can obtain bi 's.

CFB: Cipher Feedback Mode

Like OFB except that output ci − 1 is used instead of bi
c0 is IV
ci ← mi ⊕ E (key , ci − 1)

Cannot generate one-time pad in advance.

CTR: Counter Mode modes symm

Counter mode (CTR)

IV

c1 c2 c3 c4

� �

E E

IV

Ciphertext

�

E

�
E

mi = D(k,IV+i) XOR ci Decrypt?

IV + 1 IV + 2 IV + 3 IV + 4

m1 m2 m4m3

CTR modes symm

Like OFB, can encrypt in parallel

Initial IV must be random

Don't use IV for one msg and IV + 1 for another msg

Outline mac symm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

MAC: Message Authenication Code mac symm

A MAC detects any change to a msg // integrity

Signing S : msg + key −→ tag // send msg , tag

Veri�cation V : msg + tag + key −→ YES or NO
YES i� msg was exactly that sent by key holder

A MAC is secure if an attacker (w/o key)

can issue msgs m1, m2, · · · and get their tags t1, t2, · · · but
still cannot produce the valid tag t for any new msg m

// Existential forgery

MACs currently used: ECBC, SHA, SHA-3, others

MACs from Block Ciphers

MACs from Block Ciphers mac symm

Encrypting msg (eg, CBC, CFB, OFB) does not provide integrity

Modi�ed ciphertext still decrypts to something

Encrypted CBC (ECBC): yields a MAC from a block cipher

Signing S

Input: msg , key , key ′

Apply CBC on msg using key and no IV // IV = 0
Only the last cipherblock, say c , is needed
tag = E (key ′, c)

Verifying V

Input: msg , key , key ′, tag
YES i� S(msg , key , key ′) equals tag

ECBC vs CBC mac symm

Output only one block // coz not recovering plaintext

Need two keys, otherwise attacker

issues msg [m1, · · · ,mn], gets tag t = cn
creates single-block msg m′, gets tag t ′ for t ⊕m′

t ′ is valid tag for m||m′ // �||� is concatenation

Both CBC and ECBC must be computed sequentially

There are CTR-like MACs which permit parallel computation

Would using only one key with a random IV work?

msg 's tag is last cipherblock of CBC (key , IV ||msg)

MACs from Hash Functions

Hashes mac symm

Hash function H

arbitrary message −→ k-bit hash
(pre-image) (digest)

msg space � hash space (= 2k) // not 1-1

Does not take a key as input

H is cryptographically secure if // �one-way�

Pre-image resistant: hard to �nd m given H(m)

Collision-resistant: hard to �nd m 6= m′ s.t. H(m) = H(m′)

In fact, for any m 6= m′, the probability that H(m) and H(m′)
are equal at any given bit index i is 1/2

How large for collision-resistance mac symm

Assuming H is random, how large should k be?

Pr(collision in N random msgs m1, · · · ,mN)

= Pr [H(m1) = H(m2) or H(m1) = H(m3) or · · ·]
≈ N(N − 1)/2× (1/2k)

≈ N2/2k

Pr signi�cant if N2 ≈ 2k , ie, if N ≈
√
2k

Choose k so that searching through
√
2k msgs is hard

So k = 128 assumes searching through 264 msgs is hard

Some current secure hash functions mac symm

MD5 (Message digest 5): 128-bit digest

Known collision attacks, still frequently used

SHA family

SHA-1: 160-bit hash // theoretically broken, but used
SHA-256: 256-bit hash
SHA-512
etc

SHA-3 (224, 256, 385, 512) // standardized Aug 2015

Exam Internals of MD4 (128-bit hash) mac symm

Step 1: Pad msg to multiple of 512 bits

pmsg ← msg |one 1| p 0's| (64-bit encodng of p) // p in 1..512

Step 2: Process pmsg in 512-bit chunks to get hash md

treat 128-bit md as 4 words: d0, d1, d2, d3
initialize to 01|23|...|89|ab|cd|ef|fe|dc|...|10

For each successive 512-bit chunk of pmsg :

treat 512-bit chunk as 16 words: m0,m1, · · · ,m15

e0..e3 ← d0..d3 // save for later
pass 1 using mangler H1 and permutation J

// for i = 0, ..., 15: dJ(i) ← H1(i , d0, d1, d2, d3,mi)
pass 2: same but with mangler H2
pass 3: same but with mangler H3
d0..d3 ← d0..d3 ⊕ e0..e3

md ← d0..d3

MACs from hash functions mac symm

MAC of a msg is a hash of some combination of msg and key

MAC (msg) = H(key ,msg)

But need to be careful in how key and msg are combined

In particular, key ||msg is not good // �||� is concatenation

This is because usually H(m1 || m2) is H(H(m1) || m2)

Given a msg m1 and H(key || m1), attacker can get
H(key || m1 || m2) by doing H(H(key ,m1) || m2)

HMAC: Hash-MAC mac symm

HMAC: standard way to get MACs from Hashes

HMAC takes any hash function H and any size key

HMAC (key ,msg ,H)

= H((key ′ ⊕ opad) || H((key ′ ⊕ ipad) || msg))

key ′ ← key padded with 0's to H 's input block size
if key size > H 's block size, �rst hash key

opad = 0x5c5c...5c of H 's block size // outer padding

ipad = 0x3636...36 of H 's block size // inner padding

Aside: Keyed-hash ≡ Block Cipher mac symm

Encryption: m1,m2, · · · −→ c0, c1, c2, · · ·
Generate pad: bi ← H(key , bi − 1) where B0 is IV

ci ← bi ⊕mi
send IV , c1, c2, · · ·

Decryption identical

Outline mac + encrypt symm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

Integrity and con�dentiality mac + encrypt symm

Encrypt || MAC: send E (msg) || MAC (msg)

MAC (msg) may reveal something about msg
Do not use

MAC then Encrypt: send E (msg || MAC (msg))

Can be insecure for some E and MAC combinations
Do not use

Encrypt then MAC: send E (msg) || MAC (E (msg))

MAC may reveal something of ciphertext, but that's ok
Use this

Outline asymm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

Outline intro asymm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

Asymmetric Crypto: Encryption intro asymm

Key generation

Input: source of randomness and max key length L

Output: pair of keys, each of size ≤ L

pk : �public� key // publicly disclosed
sk : �secret (aka �private�) key // shared with no one

Encryption EP(pk ,m) // executed by public

Input: public key pk ; msg m (size ≤ L)

Add random pad to m // PKCS, OAEP

Output: ciphertext c (size ≤ L)

Decryption DP(sk , c) // executed by sk owner

Input: secret key sk ; ciphertext c (size ≤ L)

Output: original msg m

Asymmetric Crypto: Encryption intro asymm

Key pair [pk , sk]

Correctness

DP(sk , EP(pk ,m)) = m

Security

EP(pk ,m) appears random // one-way

Can only be decrypted with sk // trapdoor

Hard to get sk from pk

Hybrid encryption for arbitrary-size msg m

generate symmetric key k
symmetric encrypt m: cm = E (k ,m)
public-key encrypt k : ck = EP(pk , k)
send [cm, ck]

Asymmetric Crypto: Signatures intro asymm

Key generation: public key pk , secret key sk // as before

Signing Sgn(sk ,m) // executed by sk owner

Input: secret key sk ; msg m (size ≤ L)

Output: signature s (size ≤ L)

Veri�cation function Vfy(pk ,m, s) // executed by public

Input: public key pk ; msg m, signature s

Output: YES i� s is a valid signature of m using sk

Correctness: Vfy(pk , m, Sgn(sk ,m)) = YES

Security: Even with pk and many [msg , sgn] examples, cannot
produce existential forgery

Asymmetric Crypto Examples intro asymm

RSA, ECC: encryption and signatures

ElGamal, DSS: signatures

Di�e-Hellman: establishment of a shared secret

Outline theory asymm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

De-mystifying asymmetric crypto theory asymm

Asymmetric crypto is based on modulo-n arithmetic

It seems magical. but it can be de-mysti�ed with a bit of e�ort

What follows is brief look at some number theory

Prime numbers

Modulo-n addition, multiplication and exponentiation

Euler's totient function and a theorem

Prime numbers theory asymm

Integer p is prime i� it is exactly divisible only by itself and 1.

gcd(p, q): greatest common denominator of integers p and q

Largest integer that divides both exactly.

p and q are relatively prime i� gcd(p, q) = 1

In�nitely many primes, but they thin out as numbers get larger

25 primes less than 100

Pr[random 10-digit number is a prime] ≈ 1/23

Pr[random 100-digit number is a prime] ≈ 1/230

Pr[random k-digit number is a prime] ≈ 1/(k · ln 10)

Modulo-n operator theory asymm

Zn = {0, 1, · · · , n − 1}

Modulo-n: integers −→ Zn // includes negative integers

x mod-n for any integer x

= y in Zn st x = y + k ·n for some integer k

= non-negative remainder of x/n

Examples

3 mod-10 = 3 // 3 = 3+ 0·10
23 mod-10 = 3 // 23 = 3+ 2·10
−27 mod-10 = 3 // −27 = 3+ (−3)·10
Note: mod-n of negative number is non-negative

Modulo-n addition theory asymm

(a + b) mod-n for any integers a and b

Examples

(3+ 7) mod-10 = 10 mod-10 = 0

(3− 7) mod-10 = − 4 mod-10 = 6

Additive-inverse-mod-n of x // aka −x mod-n

y st (x + y) mod-n = 0 // st: such that

exists for every x

easily computed: (n − x) mod-n

Modulo-n multiplication theory asymm

(a·b) mod-n for any integers a and b

Examples

(3·7) mod-10 = 21 mod-10 = 1 // �·� is multiplication
8·(−7) mod-10 = − 56 mod-10 = 4

Multiplicative-inverse-mod-n of x // aka x−1 mod-n

y st (x ·y) mod-n = 1

exists i� gcd(x , n) = 1 // x relatively prime to n

Easily computed by Euclid's algorithm // Exam

Euclid(x , n) returns u, v st gcd(x , n) = u·x + v ·n
if gcd(x , n) = 1: u = x−1 mod-n and v = n−1 mod-x

Modulo-n exponentiation theory asymm

(ab) mod-n for any integer a and integer b > 0

Examples

32 mod-10 = 9

33 mod-10 = 27 mod-10 = 7

(−3)3 mod-10 = − 27 mod-10 = 3

Exponentiative-inverse-mod-n of x

y st (xy) mod-n = 1

exists i� gcd(x , n) = 1

easily computed given prime factors of n // only way known

Euler's Totient Function theory asymm

Zn
∗ = {x in Zn, gcd(x , n) = 1} // Z ∗

10
= {1, 3, 7, 9}

φ(n): number of elements in Zn
∗ // φ(10) = 4

Euler's Totient Function // Exam

φ(n) =

n − 1 if n prime

φ(p) · φ(q) if n = p · q and gcd(p, q) = 1

(p − 1)·pa − 1 if n = pa, p prime, a > 0

φ(p1a1) · · ·φ(pKaK) if n = p1a1 · · · pKaK

If p, q distinct primes: φ(p · q) = (p − 1) · (q − 1)

Euler's Theorem theory asymm

Euler's Theorem:

If n = p · q for distinct primes p and q, then

a(k ·φ(n) + 1) mod-n = a mod-n

for any a and k > 0

Outline RSA asymm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

RSA RSA asymm

RSA: Rivest, Shamir, Adleman

Key size variable and much longer than secret keys

at least 1024 bits (250 decimal digits)

Data block size is variable but smaller than key size

Ciphertext block is same size as key size.

Orders slower than symmetric crypto algorithms (eg, AES)

So use hybrid encryption for large messages

RSA: Generating [public key, private key] pair RSA asymm

Choose two large primes, p and q // keep p and q secret

Let n = p·q
Choose e relatively prime to φ(n) // φ(n) = (p − 1)·(q − 1)

Public key = [e, n] // make this public

Let d = mult-inverse-mod-φ(n) of e // e·d mod-φ(n) = 1

Private key = [d , n] // keep d secret

RSA: Encryption and Decryption RSA asymm

Encryption of message msg using public key

m ← add random pad to msg // PKCS, OASP

ciphertext c ← me mod-n

Note:

PKCS and OASP are padding standards

m must be less than n

Decryption of ciphertext c using private key

plaintext m ← cd mod-n // coz me ·d mod-n = m

msg ← remove pad from m

Why is m e ·d equal to m (mod-n) RSA asymm

me·d mod-n

= m1+k ·φ(n) mod-n for some k // e·d mod-φ(n) = 1

= m mod-n // Euler's theorem

= m // m in Zn

RSA: Signing and Verifying RSA asymm

Signing message msg using private key

m ← add pad to msg // PKCS

signature s ← md mod-n

Verifying signature s using public key

m ← se mod-n // coz me ·d mod-n = m

YES i� m equals msg with pad

Why RSA is believed to be secure RSA asymm

Only known way to obtain m from x = me mod-n

is by xd mod-n where d = e−1 mod-φ(n)

Only known way to obtain φ(n) is with p and q

Factoring number is believed to be hard,

so hard to obtain p and q given n

Best current algorithms: exp(n.len1/3)

Currently n.len of 1024 for OK security

Use n.len of 2048 to be sure

Decade: n.len of 3072 to be sure

RSA requires e�cient modulo exponentation RSA asymm

RSA operations (encrypt, decrypt, etc) require computing
me mod-n for large (eg, 200-digit) numbers m, e, n

Simple approach is not feasible

Multiply m with itself, take mod n; repeat e times.

e multiplications and divisions of large numbers.

Much better:

Exploit m2x = mx ·mx and m2x + 1 = m2x ·m
log e multiplications and divisions

Exam Modulo_Exponentiation(m, e, n) RSA asymm

(x0, x1, · · · , xk) ← e in binary // x0 = 1

initially y ← m; j ← 0 // y = mx0

while j < k

// loop invariant: y = m(x0, · · · , xj) mod-n

y ← y · y mod-n; // y = m(x0, · · · , xj , 0) mod-n

if xj + 1 = 1

y ← y ·m mod-n // y = m(x0, · · · , xj , 1) mod-n

j ← j + 1 // y = m(x0, · · · , xj) mod-n

// y = me mod-n

Exam Example: 12354 mod-678 RSA asymm

54 in binary is (1101110)2

123(1) mod-678 = 123

123(10) mod-678 = 123·123 mod-678 = 15129 mod-678 = 213

123(11) mod-678 = 213·123 mod-678 = 26199 mod-678 = 435

123(110) mod-678 = 435·435 mod-678 = 1889225 mod-678 = 63

123(1100) mod-678 = 63·63 mod-678 = 3969 mod-678 = 579

123(1101) mod-678 = 579·123 mod-678 = 71217 mod-678 = 27

123(11010) mod-678 = 27·27 mod-678 = 729 mod-678 = 51

123(11011) mod-678 = 51·123 mod-678 = 6273 mod-678 = 171

123(110110) mod-678 = 171·171 mod-678 = 29241 mod-678 = 87

RSA key generation is very expensive RSA asymm

There are two parts to RSA key generation

Finding big primes p and q

Finding e relatively prime to φ(p·q) // = (p − 1)·(q − 1)

Note: given e, easy to obtain d = e−1 mod-φ(n)

Finding a big prime n RSA asymm

Choose random n and test for prime. If not prime, retry.

No practical deterministic test.

Simple probabilistic test

Generate random n and random a in 1..n

Pass if an−1 mod-n = 1 // converse to Euler's theorem

Prob failure is low // ≈ 10−13 for 100-digit n

Can improve by trying di�erent a's.

But Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, · · ·

Miller-Rabin probabilistic test

Better and handles Carmichael numbers

Finding e relatively prime to p · q RSA asymm

Approach 1

Choose random primes p and q as described above

Choose e at random until e relatively prime to φ(p.q)

Approach 2

Fix e st me easy to compute (i.e., few 1's in binary)

Choose random primes p and q st e relatively prime to φ(p.q)

Common choices

e = 21 + 1 = 3 // m3 requires 2 multiplications

e = 216 + 1 = 65537 // me requires 17 multiplications

PKCS: Public Key Cryptography Standard RSA asymm

PKCS #1 v1.5

De�nes padding of msg being encrypted/signed in RSA

Padded msg is 1024 bits

Encryption (�elds are octets)

0 2 ≥ eight random non-zero octets 0 data

Signing (�elds are octets)

0 1 ≥ eight 9F16 octets 0 digest type and digest

Outline DH asymm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Con�dentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Di�e-Helman

DH: Di�e-Helman DH asymm

Establishes a key over open channel without a pre-shared secret

Inputs (public): prime p and generator g for p

1 < g < p st g i mod-p ranges over 1, · · · , p − 1

Protocol

Alice Bob
choose random x
A ← gx mod-p
send A choose random y

B ← gy mod-p
send B
K ← A y mod-p

K ← B x mod-p

Alice.K = Bob.K = gx · y mod-p // shared key

Why is DH secure DH asymm

Hard to get gx ·y mod-p from p, g , gx and gy

Multiplying gx and gy yields gx+y // not useful

Hard to get x from gx mod-p // Discrete-log problem

Hard to get y from gy mod-p

DH does not authenticate DH asymm

DH allows two principals who share nothing to establish a shared
secret over an insecure channel

DH does not authenticate the principals to each other

Alice may be talking to Trent claiming to be Bob

For authentication, principals must already share something, eg:

Alice and Bob share a secret symmetric key

Alice and Bob each have the other's public key

Alice and Bob each share a key with a trusted third party

it generates a new key and sends it securely to Alice and Bob

it securely sends the public keys of Alice and Bob to the other

Authenticated DH using pre-shared keys DH asymm

DH that incorporates a pre-shared key to provide authentication

Suppose Alice and Bob share a secret symmetric-crypto key k

Can do authenticated DH by using k to encrypt the DH msgs

Alice sends E (k , gx mod-p)

Bob sends E (k , gy mod-p)

If principals are Alice and Bob: get shared key (gx ·y mod-p)

Otherwise the principals would not achieve a shared key, so ok

Can do similar authenticated DH if Alice and Bob have each
other's public key

Why do DH given pre-shared secret DH asymm

If Alice and Bob share a secret key k , they can achieve secure
communication simply by encrypting msgs with k

What is gained by using k to do authenticated DH

The DH key would be strong whereas k may be weak (eg,
obtained from a password)

Perfect-forward secrecy: If they forget their DH private keys
after their session, then the session data remains secure even if
k is later exposed

	Overview
	Symmetric Crypto
	Block Cipher
	Encryption Modes for Variable-size Messages
	Message Authentication Codes (MACs)
	MAC and Confidentiality

	Asymmetric Crypto (aka Public-Key Crypto)
	Introduction
	A Little Bit of Number Theory
	RSA
	Diffie-Helman

