414-S17 Crypto

Shankar

April 18, 2017

Outline

Overview

Symmetric Crypto Block Cipher Encryption Modes for Variable-size Messages Message Authentication Codes (MACs) MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto) Introduction A Little Bit of Number Theory RSA Diffie-Helman

Crypto is everywhere

- communications: https, IPsec, 802.11, WPA2, ...
- files on disk: Bitlocker, FileVault, ...
- user authentication: Kerberos, ...

• • • •

- Crypto enables secure data communication and storage
 - Confidentiality: only the intended receiver can read the data
 - Integrity: the intended receiver detects any changes to the data
 - Authentication: data received was sent by the specified sender
 - Non-repudiation: third party can verify that the data was sent by the specified sender

- Key generation: generate encryption and decryption keys
- **Encryption** E: plaintext + encryption key \longrightarrow ciphertext
- **Decryption** D: plaintext \leftarrow ciphertext + decryption key

Symmetric crypto

- encryption key = decryption key
- eg, AES, MD5, SHA-1, SHA-256, ...

🛛 fast

Asymmetric (aka public-key) crypto

- encryption key \neq decryption key
- ∎ eg, RSA, DH, DSS, ...
- very slow

Correctness

- For any encryption key key_E and its decryption key key_D:
 if E(key_E, ptxt) returns ctxt then D(key_D, ctxt) returns ptxt
- Security: Assuming keys are chosen uniformly randomly
 - Given cyphertext, hard to get plaintext.
 - Given plaintext and ciphertext, hard to get key.
 - Hard: requires brute-force search of key-space (eg, 2¹²⁸ keys)
- Attacker models (from weakest to strongest)
 - Ciphertext-only attack
 - Known plaintext attack: one matching pair
 - Chosen plaintext attack: encryption oracle
 - Chosen ciphertext attack: encryption oracle + decryption oracle

- A and B separated by insecure channel, share secret key k.
- Confidentiality:
 - A sends E(k, plaintext)
 - B receives and does D(k, ciphertext)
- Integrity:
 - mac: E(k, hash(plaintext))
 - A sends [plaintext, mac]
 - B receives and verifies mac
- Authentication:
 - A sends a random r_A to B, and expects $E(k, r_A)$ back
 - B sends a random r_B to A, and expects $E(k, r_B)$ back

Outline

Overview

Symmetric Crypto

Block Cipher Encryption Modes for Variable-size Messages Message Authentication Codes (MACs) MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto) Introduction A Little Bit of Number Theory RSA Diffie-Helman

Outline

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages Message Authentication Codes (MACs) MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto) Introduction A Little Bit of Number Theory RSA Diffie-Helman

- Fixed-size messages of d bits (eg, 64, 128)
- Fixed-size keys of k bits (eg, 128, 256)

any random k bits is a valid key

• Encryption E: d-bit msg + k-bit key $\longrightarrow d$ -bit output

block cipher symm

- To decrypt, E must be 1-1 mapping of msgs to outputs
- To be secure, *E* must be "random"
 - E(key, msg) gives no information about key or msg
 - Msgs and keys that differ (even if only slightly) map to outputs that differ randomly
- Key size k large enough so that searching 2^k is infeasible
- Clearly, *E* cannot be a "simple" function, eg, $msg \oplus key$

Naive approach

- Table of a random permutation of *d*-bit strings $// 2^d \times d$ bits
- E(i) is ith row of table
- Secure but impractical // table itself is the key!
- Practical approach: localized scrambling and global permutations
 - Generate *n* "round keys" from the key // *n* small, eg, 10
 - Repeat n times

Partition *d*-bit string into *p*-bit chunks $// 2^p$ is manageable Scramble each *p*-bit chunk using $2^p \times p$ tables // table's permutation depends on round-*n* key Permute the resulting *d*-bit string

Decryption is similar // often reuse same hardware

Old standard no longer used: 56-bit keys, 64-bit text

DES encryption

a1:
$$L_0 \mid R_0 \leftarrow perm(pt)$$

a2: for $n = 0, ..., 15$
a3: $L_{n+1} \leftarrow R_n$
a4: $R_{n+1} \leftarrow mnglr_n(R_n, K_{n+1}) \oplus L_n$
// yields $L_{16} \mid R_{16}$

a5:
$$L_{17} \mid R_{17} \leftarrow R_{16} \mid L_{16}$$

a6: $ct \leftarrow perm^{-1}(R_{16} \mid L_{16})$

// key order: $K_1, \ \cdots, \ K_{16}$

DES decryption

b1:
$$R_{16} \mid L_{16} \leftarrow perm(ct)$$
 // a6 bw
b2: for $n = 15, ..., 0$ // a2 bw
b3: $R_n \leftarrow L_{n+1}$ // a3 bw
b4: $L_n \leftarrow mnglr_n(R_n, K_n) \oplus R_{n+1}$ // a4 bw
// sets L_n to X such that
// $R_{n+1} \leftarrow mnglr_n(R_n, K_n) \oplus X$
// yields $R_0 \mid L_0$
b5: $L_0 \mid R_0 \leftarrow R_0 \mid L_0$ // a5 bw
b6: pt $\leftarrow perm^{-1}(L_0 \mid R_0)$ // a1 bw

// key order $K_{16}, \ \cdots, \ K_1$

Makes DES more secure

- Encryption: encrypt key1 ightarrow decrypt key2 ightarrow encrypt key1
- \blacksquare Decryption: decrypt key1 \rightarrow encrypt key2 \rightarrow decrypt key1

• encrypt key1 \rightarrow encrypt key1 \rightarrow is not effective

Just equivalent to using another single key.

encrypt key1 \rightarrow encrypt key2 is not so good

- Current standard encryption algorithm
- Different key sizes: 128, 192, 256
- Data block size: 128 bits
- Algorithm overview Exam
 - 10, 12, or 14 rounds

// depending on key size

- Round keys generated from the cipher key
- \blacksquare Data block treated as 4 \times 4 matrix of bytes
- Each round involves operations in a finite field
 - permutation of the bytes
 - cyclic shifting of rows
 - mixing bytes in each column

// lookup table

Outline

Overview

Symmetric Crypto

Block Cipher Encryption Modes for Variable-size Messages Message Authentication Codes (MACs) MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto) Introduction A Little Bit of Number Theory RSA Diffie-Helman Encrypting variable-size msg given d-bit block cipher

- Pad message to multiple of block size: $msg \longrightarrow m_1, m_2, \cdots$
- Use block encryption repeatedly to get ciphertext $m_1, m_2, \cdots \rightarrow c_1, c_2, \cdots$
- Desired
 - c_j ≠ c_k even if m_j = m_k // like block encryption
 Repeated encryptions of msg yield different ciphertxt // unlike block encryption

modes

symm

■ Various modes: ECB, CBC, CFB, OFB, CTR, others

- Encryption: $m_1, m_2, \cdots \rightarrow c_1, c_2, \cdots$
- Natural approach: encrypt each block independently

modes

svmm

- Encryption: $c_i = E(key, m_i)$
- Decryption: $m_i = D(key, c_i)$
- Not good: repeated blocks get same cipherblock
- Never use ECB
 - Amazingly, the default mode for some crypto libraries

Encryption: $m_1, m_2, \cdots \rightarrow c_1, c_2, \cdots$

- Use c_{i-1} as a "random" pad to m_i before encrypting.
 - $c_0 \leftarrow random IV$
 - $c_i \leftarrow E(key, m_i \oplus c_{i-1})$
 - send IV, c_1, c_2, \cdots
 - Can be attacked if *IV* is predictable

Decryption: $c_1, c_2, \cdots \longrightarrow m_1, m_1$ $m_i \leftarrow D(key, c_i) \oplus c_{i-1}$ for Can be done in parallel

$$m_1, m_2, \cdots$$
 for $i = 1, 2, \cdots$

OFB: Output Feedback Mode

- Encryption: $m_1, m_2, \cdots \rightarrow c_1, c_2, \cdots$
- Generate pad b_0, b_1, \cdots :
 - $b_0 \leftarrow random IV$
 - $b_i \leftarrow E(key, b_{i-1})$
- $c_i \leftarrow b_i \oplus m_i$
- One-time pad that can be generated in advance.
 - attacker with <plaintxt, ciphertxt> can obtain b_i's.

modes symm

CFB: Cipher Feedback Mode

- Like OFB except that output c_{i-1} is used instead of b_i
 - c₀ is IV
 - $c_i \leftarrow m_i \oplus E(key, c_{i-1})$
- Cannot generate one-time pad in advance.

Counter mode (CTR)

Ciphertext

Decrypt? $m_i = D(k, IV+i) \text{ XOR } c_i$

modes

symm

Like OFB, can encrypt in parallel

- Initial IV must be random
 - Don't use IV for one msg and IV + 1 for another msg

Outline

Overview

Symmetric Crypto

Block Cipher Encryption Modes for Variable-size Messages Message Authentication Codes (MACs) MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto) Introduction A Little Bit of Number Theory RSA Diffie-Helman

- A MAC detects any change to a msg // integrity
- Signing S: $msg + key \longrightarrow tag$ // send msg, tag
- Verification V: $msg + tag + key \longrightarrow$ YES or NO
 - YES iff msg was exactly that sent by key holder
- A MAC is secure if an attacker (w/o key)
 - can issue msgs m₁, m₂, ··· and get their tags t₁, t₂, ··· but still cannot produce the valid tag t for any new msg m
 // Existential forgery
- MACs currently used: ECBC, SHA, SHA-3, others

MACs from Block Ciphers

Encrypting msg (eg, CBC, CFB, OFB) does not provide integrity

- Modified ciphertext still decrypts to something
- Encrypted CBC (ECBC): yields a MAC from a block cipher
- Signing S
 - Input: *msg*, *key*, *key*′
 - Apply CBC on *msg* using *key* and no *IV*
 - Only the last cipherblock, say *c*, is needed
 - tag = E(key', c)
- Verifying V
 - Input: *msg*, *key*, *key'*, *tag*
 - YES iff S(msg, key, key') equals tag

// *IV* = 0

- Output only one block // coz not recovering plaintext
- Need two keys, otherwise attacker
 - issues msg $[m_1, \cdots, m_n]$, gets tag $t = c_n$
 - creates single-block msg m', gets tag t' for $t\oplus m'$
 - t' is valid tag for m||m' // "||" is concatenation
- Both CBC and ECBC must be computed sequentially
 - There are CTR-like MACs which permit parallel computation
- Would using only one key with a random *IV* work?
 msg's tag is last cipherblock of *CBC(key, IV||msg)*

MACs from Hash Functions

Hashes

Hash function H

- arbitrary message \longrightarrow k-bit hash (pre-image) (digest)
- msg space \gg hash space (= 2^k) // not 1-1
- Does not take a key as input

■ *H* is cryptographically secure if // "one-way"

- Pre-image resistant: hard to find m given H(m)
- Collision-resistant: hard to find $m \neq m'$ s.t. H(m) = H(m')
- In fact, for any $m \neq m'$, the probability that H(m) and H(m') are equal at any given bit index *i* is 1/2

• Assuming H is random, how large should k be?

- $Pr(\text{collision in } N \text{ random msgs } m_1, \cdots, m_N)$ = $Pr[H(m_1) = H(m_2) \text{ or } H(m_1) = H(m_3) \text{ or } \cdots]$ $\approx N(N-1)/2 \times (1/2^k)$ $\approx N^2/2^k$
- Pr significant if $N^2 \approx 2^k$, ie, if $N \approx \sqrt{2^k}$

• Choose k so that searching through $\sqrt{2^k}$ msgs is hard

• So k = 128 assumes searching through 2^{64} msgs is hard

MD5 (Message digest 5): 128-bit digest

Known collision attacks, still frequently used

SHA family

- SHA-1: 160-bit hash
- SHA-256: 256-bit hash
- SHA-512

etc

■ SHA-3 (224, 256, 385, 512)

 ${\ensuremath{\textit{//}}}$ theoretically broken, but used

// standardized Aug 2015

Exam Internals of MD4 (128-bit hash)

- Step 1: Pad *msg* to multiple of 512 bits
 - $pmsg \leftarrow msg$ |one 1| p 0's| (64-bit encoding of p) // p in 1..512
- Step 2: Process *pmsg* in 512-bit chunks to get hash *md*
 - treat 128-bit md as 4 words: d_0, d_1, d_2, d_3
 - initialize to 01|23|...|89|ab|cd|ef|fe|dc|...|10
 - For each successive 512-bit chunk of *pmsg*:
 - treat 512-bit chunk as 16 words: m_0, m_1, \cdots, m_{15}
 - $e_0..e_3 \leftarrow d_0..d_3$ // save for later
 - pass 1 using mangler H1 and permutation J

for i = 0, ..., 15 $d_{J(i)} \leftarrow H1(i, d_0, d_1, d_2, d_3, m_i)$

- pass 2: same but with mangler H2
- pass 3: same but with mangler H3

$$\bullet d_0..d_3 \leftarrow d_0..d_3 \oplus e_0..e_3$$

 $\blacksquare md \leftarrow d_0..d_3$

MAC of a msg is a hash of some combination of msg and key
 MAC(msg) = H(key, msg)

mac

svmm

But need to be careful in how key and msg are combined

■ In particular, *key*||*msg* is not good // "||" is concatenation

- This is because usually $H(m_1 || m_2)$ is $H(H(m_1) || m_2)$
- Given a msg m_1 and $H(key || m_1)$, attacker can get $H(key || m_1 || m_2)$ by doing $H(H(key, m_1) || m_2)$

- HMAC: standard way to get MACs from Hashes
- HMAC takes any hash function H and any size key
- HMAC(key, msg, H)
 = H((key' ⊕ opad) || H((key' ⊕ ipad) || msg))
 key' ← key padded with 0's to H's input block size
 - if key size > H's block size, first hash key
 - opad = 0x5c5c...5c of H's block size // outer padding
 ipad = 0x3636...36 of H's block size // inner padding

• Encryption: $m_1, m_2, \cdots \longrightarrow c_0, c_1, c_2, \cdots$

• Generate pad: $b_i \leftarrow H(key, b_{i-1})$ where B_0 is IV

mac

symm

- $c_i \leftarrow b_i \oplus m_i$
- send IV, c_1, c_2, \cdots

Decryption identical

Outline

Overview

Symmetric Crypto

Block Cipher Encryption Modes for Variable-size Messages Message Authentication Codes (MACs) MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto) Introduction A Little Bit of Number Theory RSA Diffie-Helman Encrypt || MAC: send E(msg) || MAC(msg)

- MAC(msg) may reveal something about msg
- Do not use
- MAC then Encrypt: send E(msg || MAC(msg))
 - Can be insecure for some E and MAC combinations
 - Do not use
- Encrypt then MAC: send E(msg) || MAC(E(msg))
 - MAC may reveal something of ciphertext, but that's ok
 Use this

Outline

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages Message Authentication Codes (MACs)

MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction A Little Bit of Number Theory RSA Diffie-Helman

Outline

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages Message Authentication Codes (MACs)

MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto) Introduction A Little Bit of Number Theory RSA Diffie-Helman

Key generation

- Input: source of randomness and max key length L
- Output: pair of keys, each of size $\leq L$
 - *pk*: "public" key
 - sk: "secret (aka "private") key
- Encryption $E_P(pk, m)$
 - Input: public key pk; msg m (size $\leq L$)
 - Add random pad to m
 - Output: ciphertext c (size $\leq L$)
- Decryption $D_P(sk, c)$
 - Input: secret key sk; ciphertext c (size $\leq L$)
 - Output: original msg m

// publicly disclosed
// shared with no one

intro asymm

- ${\ensuremath{\textit{/\!\!/}}}$ executed by public
 - // PKCS, OAEP
- // executed by *sk* owner

- Key pair [*pk*, *sk*]
- Correctness
 - $\bullet D_P(sk, E_P(pk, m)) = m$
- Security
 - *E_P(pk, m)* appears random
 - Can only be decrypted with sk
 - Hard to get sk from pk
- Hybrid encryption for arbitrary-size msg m
 - generate symmetric key k
 - symmetric encrypt m: $c_m = E(k, m)$
 - public-key encrypt k: $c_k = E_P(pk, k)$
 - send [*c_m*, *c_k*]

// one-way // trapdoor Key generation: public key pk, secret key sk // as before

intro asymm

- Signing Sgn(sk, m) // executed by sk owner
 - Input: secret key sk; msg m (size $\leq L$)
 - Output: signature s (size $\leq L$)
- Verification function Vfy(pk, m, s) // executed by public
 - Input: public key pk; msg m, signature s
 - Output: YES iff s is a valid signature of m using sk
- **Correctness**: Vfy(pk, m, Sgn(sk, m)) = YES
- Security: Even with pk and many [msg, sgn] examples, cannot produce existential forgery

- RSA, ECC: encryption and signatures
- ElGamal, DSS: signatures
- Diffie-Hellman: establishment of a shared secret

intro

asymm

Outline

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages

Message Authentication Codes (MACs)

MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction

A Little Bit of Number Theory

RSA

Diffie-Helman

- Asymmetric crypto is based on modulo-*n* arithmetic
- It seems magical. but it can be de-mystified with a bit of effort
- What follows is brief look at some number theory
 - Prime numbers
 - Modulo-n addition, multiplication and exponentiation
 - Euler's totient function and a theorem

Integer p is prime iff it is exactly divisible only by itself and 1.

theory asymm

gcd(p, q): greatest common denominator of integers p and q
 Largest integer that divides both exactly.

p and q are relatively prime iff gcd(p,q) = 1

Infinitely many primes, but they thin out as numbers get larger

- 25 primes less than 100
- \blacksquare Pr[random 10-digit number is a prime] $\approx 1/23$
- $\scriptstyle \bullet \,$ Pr[random 100-digit number is a prime] $\approx 1/230$
- Pr[random k-digit number is a prime] $\approx 1/(k \cdot \ln 10)$

$$Z_n = \{0, 1, \cdots, n-1\}$$

• Modulo-*n*: integers $\longrightarrow Z_n$ // includes negative integers

theory asymm

x mod-n for any integer x
 y in Z_n st x = y + k·n for some integer k
 non-negative remainder of x/n

Examples

- **a** 3 mod-10 = 3 // 3 = 3 + 0.10
- **2**3 mod-10 = 3 // 23 = 3 + 2.10
- $-27 \mod 10 = 3$ // $-27 = 3 + (-3) \cdot 10$ Note: mod-*n* of negative number is non-negative

• $(a+b) \mod n$ for any integers a and b

- Examples
 (3+7) mod-10 = 10 mod-10 = 0
 (3-7) mod-10 = -4 mod-10 = 6
- Additive-inverse-mod-*n* of *x* // aka −*x* mod-*n*
 - y st $(x+y) \mod n = 0$

// *st*: such that

theory

asymm

- exists for every x
- easily computed: $(n x) \mod n$

- $(a \cdot b) \mod n$ for any integers a and b
- Examples
 - $(3.7) \mod 10 = 21 \mod 10 = 1$ // "." is multiplication • $8 \cdot (-7) \mod 10 = -56 \mod 10 = 4$

theory asymm

• Multiplicative-inverse-mod-n of x // aka $x^{-1} \mod n$

• y st
$$(x \cdot y) \mod n = 1$$

- exists iff gcd(x, n) = 1 // x relatively prime to n
- Easily computed by Euclid's algorithm // Exam
 Euclid(x, n) returns u, v st gcd(x, n) = u·x + v·n

• if
$$gcd(x, n) = 1$$
: $u = x^{-1} \mod n$ and $v = n^{-1} \mod x$

- $(a^b) \mod n$ for any integer a and integer b > 0
- Examples
 - \bullet 3² mod-10 = 9
 - $3^3 \mod 10 = 27 \mod 10 = 7$
 - $(-3)^3 \mod 10 = -27 \mod 10 = 3$

Exponentiative-inverse-mod-n of x

• y st
$$(x^{\mathcal{Y}}) \mod n = 1$$

- exists iff gcd(x, n) = 1
- easily computed given prime factors of n // only way known

theory asymm

$$Z_n^* = \{x \text{ in } Z_n, gcd(x, n) = 1\} \qquad \# Z_{10}^* = \{1, 3, 7, 9\}$$

•
$$\phi(n)$$
: number of elements in Z_n^* // $\phi(10) = 4$

Euler's Totient Function // Exam

$$\phi(n) = \begin{cases} n-1 & \text{if } n \text{ prime} \\ \phi(p) \cdot \phi(q) & \text{if } n = p \cdot q \text{ and } gcd(p,q) = 1 \\ (p-1) \cdot p^{a} - 1 & \text{if } n = p^{a}, p \text{ prime, } a > 0 \\ \phi(p_{1}^{a_{1}}) \cdots \phi(p_{K}^{a_{K}}) & \text{if } n = p_{1}^{a_{1}} \cdots p_{K}^{a_{K}} \end{cases}$$

If p, q distinct primes: $\phi(p \cdot q) = (p-1) \cdot (q-1)$

theory asymm

Euler's Theorem:

If $n = p \cdot q$ for distinct primes p and q, then $a(k \cdot \phi(n) + 1) \mod n = a \mod n$ for any a and k > 0

Outline

RSA asymm

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages Message Authentication Codes (MACs)

MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction A Little Bit of Number Theory RSA Diffie-Helman

- 🛛 RSA: Rivest, Shamir, Adleman
- Key size variable and much longer than secret keys
 - at least 1024 bits (250 decimal digits)
- Data block size is variable but smaller than key size
- Ciphertext block is same size as key size.
- Orders slower than symmetric crypto algorithms (eg, AES)

RSA

asymm

So use hybrid encryption for large messages

• Choose two large primes, p and q

// keep p and q secret

• Let $n = p \cdot q$

- Choose *e* relatively prime to $\phi(n)$
- Public key = [e, n]

 $\# \phi(n) = (p-1) \cdot (q-1)$

// make this public

Let d = mult-inverse-mod- $\phi(n)$ of $e \qquad // e \cdot d \mod \phi(n) = 1$

Private key = [d, n] // keep d secret

Encryption of message msg using public key

- $m \leftarrow \text{add random pad to } msg$
- ciphertext $c \leftarrow m^e \mod n$

Note:

- PKCS and OASP are padding standards
- *m* must be less than *n*
- Decryption of ciphertext c using private key
 - plaintext $m \leftarrow c^d \mod n$ // coz $m^{e \cdot d} \mod n = m$
 - $msg \leftarrow$ remove pad from m

// PKCS, OASP

RSA asymm

$$\begin{array}{ll} m^{e \cdot d} \mod n \\ = m^{1+k \cdot \phi(n)} \mod n & \text{for some } k \\ = m \mod n & \text{ $ \# e \cdot d \mod -\phi(n) = 1$} \\$$

RSA asymm

Signing message msg using private key

- $\blacksquare m \leftarrow \mathsf{add} \mathsf{ pad} \mathsf{ to} \textit{ msg}$
- signature $s \leftarrow m^d \mod n$

Verifying signature s using public key

 $m \leftarrow s^e \mod n \qquad \qquad // \operatorname{coz} \ m^{e \cdot d} \mod n = m$

RSA asymm

// PKCS

YES iff m equals msg with pad

■ Only known way to obtain m from x = m^e mod-n is by x^d mod-n where d = e⁻¹ mod-φ(n) RSA

asymm

- Only known way to obtain $\phi(n)$ is with p and q
- Factoring number is believed to be hard, so hard to obtain p and q given n
 - Best current algorithms: exp(n.len^{1/3})
 - Currently n.len of 1024 for OK security
 - Use n.len of 2048 to be sure
 - Decade: *n.len* of 3072 to be sure

 RSA operations (encrypt, decrypt, etc) require computing m^e mod-n for large (eg, 200-digit) numbers m, e, n

RSA

asvmm

Simple approach is not feasible

- Multiply *m* with itself, take mod *n*; repeat *e* times.
- e multiplications and divisions of large numbers.

Much better:

- Exploit $m^{2x} = m^x \cdot m^x$ and $m^{2x+1} = m^{2x} \cdot m$
- log e multiplications and divisions

■ // y = m^e mod-n

- **54** in binary is (1101110)₂
- \blacksquare 123⁽¹⁾ mod-678 = 123
- $123^{(10)} \mod -678 = 123 \cdot 123 \mod -678 = 15129 \mod -678 = 213$

RSA asymm

- $123^{(11)} \mod -678 = 213 \cdot 123 \mod -678 = 26199 \mod -678 = 435$
- $123^{(110)}$ mod-678 = 435.435 mod-678 = 1889225 mod-678 = 63
- $123^{(1100)} \mod -678 = 63.63 \mod -678 = 3969 \mod -678 = 579$
- 123⁽¹¹⁰¹⁾ mod-678 = 579·123 mod-678 = 71217 mod-678 = 27
- $123^{(11010)} \mod -678 = 27 \cdot 27 \mod -678 = 729 \mod -678 = 51$
- $123^{(11011)}$ mod-678 = 51·123 mod-678 = 6273 mod-678 = 171
- $123^{(110110)} \mod 678 = 171 \cdot 171 \mod 678 = 29241 \mod 678 = 87$

- There are two parts to RSA key generation
 - Finding big primes p and q
 - Finding e relatively prime to $\phi(p \cdot q)$ // $= (p-1) \cdot (q-1)$

RSA asymm

Note: given e, easy to obtain $d = e^{-1} \mod \phi(n)$

- Choose random *n* and test for prime. If not prime, retry.
- No practical deterministic test.
- Simple probabilistic test
 - Generate random *n* and random *a* in 1..*n*
 - Pass if $a^{n-1} \mod n = 1$ // converse to Euler's theorem

RSA

asymm

- Prob failure is low $/\!\!/ \approx 10^{-13}$ for 100-digit n
- Can improve by trying different *a*'s.
- But Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, · · ·
- Miller-Rabin probabilistic test
 - Better and handles Carmichael numbers

Approach 1

- Choose random primes p and q as described above
- Choose e at random until e relatively prime to $\phi(p.q)$

Approach 2

- Fix e st m^e easy to compute (i.e., few 1's in binary)
- Choose random primes p and q st e relatively prime to $\phi(p.q)$

RSA

asvmm

- Common choices
 - $e = 2^1 + 1 = 3$ // m^3 requires 2 multiplications
 - $e = 2^{16} + 1 = 65537$ // m^e requires 17 multiplications

PKCS #1 v1.5

Defines padding of msg being encrypted/signed in RSA

RSA

asymm

Padded msg is 1024 bits

Encryption (fields are octets)

	0 2	\geq eight random non-zero octets	0	data
--	-----	-------------------------------------	---	------

Signing (fields are octets)

Outline

Overview

Symmetric Crypto

Block Cipher

Encryption Modes for Variable-size Messages Message Authentication Codes (MACs)

MAC and Confidentiality

Asymmetric Crypto (aka Public-Key Crypto)

Introduction A Little Bit of Number Theory RSA Diffie-Helman

DH: Diffie-Helman

Establishes a key over open channel without a pre-shared secret

Inputs (public): prime p and generator g for p

• 1 < g < p st $g^i \mod p$ ranges over $1, \cdots, p-1$

Protocol

Alice	Bob			
choose random x				
$A \leftarrow g^X \operatorname{mod} p$				
send A	choose random <i>y</i>			
	$B \leftarrow g^{\mathcal{Y}} \mod p$			
	send <i>B</i>			
	$K \leftarrow A^{\mathcal{Y}} \mod p$			
$K \leftarrow B^X \mod p$				

Alice $K = \operatorname{Bob} K = g^{X \cdot Y} \operatorname{mod} p$

// shared key

• Hard to get $g^{X \cdot Y} \mod p$ from p, g, g^X and g^Y

- Multiplying g^X and g^Y yields g^{X+Y} // not useful
- Hard to get x from g^X mod-p
- Hard to get y from gy mod-p

// Discrete-log problem

DH allows two principals who share nothing to establish a shared secret over an insecure channel

DH

asvmm

- DH does not authenticate the principals to each other
 - Alice may be talking to Trent claiming to be Bob
- For authentication, principals must already share something, eg:
 - Alice and Bob share a secret symmetric key
 - Alice and Bob each have the other's public key
 - Alice and Bob each share a key with a trusted third party
 - it generates a new key and sends it securely to Alice and Bob
 - it securely sends the public keys of Alice and Bob to the other

DH that incorporates a pre-shared key to provide authentication

DH asymm

- Suppose Alice and Bob share a secret symmetric-crypto key k
- Can do authenticated DH by using k to encrypt the DH msgs
 - Alice sends E(k, g^X mod-p)
 - Bob sends E(k, g^y mod-p)
 - If principals are Alice and Bob: get shared key (g^X·Y mod-p)
 Otherwise the principals would not achieve a shared key, so ok
- Can do similar authenticated DH if Alice and Bob have each other's public key

If Alice and Bob share a secret key k, they can achieve secure communication simply by encrypting msgs with k

DH asymm

- What is gained by using k to do authenticated DH
 - The DH key would be strong whereas k may be weak (eg, obtained from a password)
 - Perfect-forward secrecy: If they forget their DH private keys after their session, then the session data remains secure even if k is later exposed