414-S17 Crypto

Shankar

April 18, 2017

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

- Crypto is everywhere
- communications: https, IPsec, 802.11, WPA2, ...
- files on disk: Bitlocker, FileVault, ...
- user authentication: Kerberos, ...
-...

■ Crypto enables secure data communication and storage

- Confidentiality: only the intended receiver can read the data
- Integrity: the intended receiver detects any changes to the data
- Authentication: data received was sent by the specified sender
- Non-repudiation: third party can verify that the data was sent by the specified sender

Symmetric and Asymmetric Crypto

■ Key generation: generate encryption and decryption keys
■ Encryption $E: \quad$ plaintext + encryption key \longrightarrow ciphertext
■ Decryption $D: \quad$ plaintext \longleftarrow ciphertext + decryption key

■ Symmetric crypto

- encryption key = decryption key
- eg, AES, MD5, SHA-1, SHA-256, ...
- fast

■ Asymmetric (aka public-key) crypto

- encryption key \neq decryption key
- eg, RSA, DH, DSS, ...
- very slow

Desired properties of crypto functions

- Correctness
- For any encryption key $k e y_{E}$ and its decryption key $k e y_{D}$: if $E\left(k e y_{E}, p t x t\right)$ returns ctxt then $D\left(k_{e y_{D}}, c t x t\right)$ returns ptxt

■ Security: Assuming keys are chosen uniformly randomly

- Given cyphertext, hard to get plaintext.
- Given plaintext and ciphertext, hard to get key.
- Hard: requires brute-force search of key-space (eg, 2^{128} keys)
- Attacker models (from weakest to strongest)
- Ciphertext-only attack
- Known plaintext attack: one matching pair
- Chosen plaintext attack: encryption oracle
- Chosen ciphertext attack: encryption oracle + decryption oracle

Achieving secure communication

■ A and B separated by insecure channel, share secret key k.

- Confidentiality:
- A sends $E(k$, plaintext $)$
- B receives and does $D(k$, ciphertext $)$
- Integrity:
- mac: $E(k$, hash(plaintext) $)$
- A sends [plaintext, mac]
- B receives and verifies mac
- Authentication:
- A sends a random r_{A} to B, and expects $E\left(k, r_{A}\right)$ back
- B sends a random r_{B} to A, and expects $E\left(k, r_{B}\right)$ back

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

■ Fixed-size messages of d bits (eg, 64, 128)
■ Fixed-size keys of k bits (eg, 128, 256)

- any random k bits is a valid key

■ Encryption $E: d$-bit msg $+k$-bit key $\longrightarrow d$-bit output
■ To decrypt, E must be 1-1 mapping of msgs to outputs
■ To be secure, E must be "random"

- E (key, msg) gives no information about key or msg
- Msgs and keys that differ (even if only slightly) map to outputs that differ randomly

■ Key size k large enough so that searching 2^{k} is infeasible

- Clearly, E cannot be a "simple" function, eg, msg \oplus key

■ Naive approach

- Table of a random permutation of d-bit strings $/ / 2^{d} \times d$ bits
- $E(i)$ is ith row of table
- Secure but impractical // table itself is the key!

■ Practical approach: localized scrambling and global permutations

- Generate n "round keys" from the key // n small, eg, 10
- Repeat n times

Partition d-bit string into p-bit chunks // 2^{p} is manageable Scramble each p-bit chunk using $2^{p} \times p$ tables $/ /$ table's permutation depends on round- n key Permute the resulting d-bit string

- Decryption is similar
// often reuse same hardware

■ Old standard no longer used: 56-bit keys, 64-bit text

Exam DES encryption and decryption

DES encryption

a1: $L_{0} \mid R_{0} \leftarrow \operatorname{perm}(p t)$
a2: for $n=0, \ldots, 15$
a3: $\quad L_{n+1} \leftarrow R_{n}$
a4: $\quad R_{n+1} \leftarrow m n g / r_{n}\left(R_{n}, K_{n+1}\right) \oplus L_{n}$ $/ /$ yields $L_{16} \mid R_{16}$
a5: $\quad L_{17}\left|R_{17} \leftarrow R_{16}\right| L_{16}$
a6: $\quad c t \leftarrow \operatorname{perm}^{-1}\left(R_{16} \mid L_{16}\right)$
// key order: K_{1}, \cdots, K_{16}

DES decryption
b1: $R_{16} \mid L_{16} \leftarrow \operatorname{perm}(c t) \quad / / ~ a 6$ bw
b2: for $n=15, \ldots, 0 \quad / /$ a2 bw
b3: $\quad R_{n} \leftarrow L_{n+1} \quad / /$ a3 bw
b4: $\quad L_{n} \leftarrow m n g / r_{n}\left(R_{n}, K_{n}\right) \oplus R_{n+1} \quad / /$ a4 bw // sets L_{n} to X such that
// $R_{n+1} \leftarrow m n g / r_{n}\left(R_{n}, K_{n}\right) \oplus X$
// yields $R_{0} \mid L_{0}$
b5: $L_{0}\left|R_{0} \leftarrow R_{0}\right| L_{0}$
// a5 bw
b6: pt $\leftarrow \operatorname{perm}^{-1}\left(L_{0} \mid R_{0}\right) \quad / /$ a1 bw
// key order K_{16}, \cdots, K_{1}

■ Makes DES more secure

- Encryption: encrypt key1 \rightarrow decrypt key $2 \rightarrow$ encrypt key1
- Decryption: decrypt key1 \rightarrow encrypt key2 \rightarrow decrypt key1

■ encrypt key $1 \rightarrow$ encrypt key1 is not effective

- Just equivalent to using another single key.

■ encrypt key1 \rightarrow encrypt key2 is not so good

■ Current standard encryption algorithm
■ Different key sizes: 128, 192, 256
■ Data block size: 128 bits

- Algorithm overview Exam
- 10, 12, or 14 rounds // depending on key size
- Round keys generated from the cipher key
- Data block treated as 4×4 matrix of bytes
- Each round involves operations in a finite field
- permutation of the bytes
// lookup table
- cyclic shifting of rows
- mixing bytes in each column

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

■ Encrypting variable-size msg given d-bit block cipher

- Pad message to multiple of block size: $m s g \longrightarrow m_{1}, m_{2}, \cdots$
- Use block encryption repeatedly to get ciphertext $m_{1}, m_{2}, \cdots \quad c_{1}, c_{2}, \cdots$

■ Desired

- $c_{j} \neq c_{k}$ even if $m_{j}=m_{k} \quad / /$ like block encryption
- Repeated encryptions of msg yield different ciphertxt // unlike block encryption

■ Various modes: ECB, CBC, CFB, OFB, CTR, others

■ Encryption: $m_{1}, m_{2}, \cdots \quad \longrightarrow \quad c_{1}, c_{2}, \cdots$
■ Natural approach: encrypt each block independently
■ Encryption: $c_{i}=E\left(k e y, m_{i}\right)$
■ Decryption: $m_{i}=D\left(\right.$ key,$\left.c_{i}\right)$
■ Not good: repeated blocks get same cipherblock

- Never use ECB
- Amazingly, the default mode for some crypto libraries

CBC: Cipher Block Chaining

■ Encryption: $m_{1}, m_{2}, \cdots \quad \longrightarrow \quad c_{1}, c_{2}, \cdots$
■ Use $c_{i}-1$ as a "random" pad to m_{i} before encrypting.

- $c_{0} \leftarrow$ random $I V$
- $c_{i} \leftarrow E\left(k^{2} y, m_{i} \oplus c_{i-1}\right)$
- send $I V, c_{1}, c_{2}, \cdots$
- Can be attacked if IV is predictable

■ Decryption: $c_{1}, c_{2}, \cdots \quad \longrightarrow \quad m_{1}, m_{2}, \cdots$

- $m_{i} \leftarrow D\left(\right.$ key,$\left.c_{i}\right) \oplus c_{i-1} \quad$ for $i=1,2, \cdots$
- Can be done in parallel

OFB: Output Feedback Mode

■ Encryption: $m_{1}, m_{2}, \cdots \quad \longrightarrow \quad c_{1}, c_{2}, \cdots$
■ Generate pad b_{0}, b_{1}, \cdots :

- $b_{0} \leftarrow$ random $I V$
- $b_{i} \leftarrow E\left(k e y, b_{i}-1\right)$
$\square c_{i} \leftarrow b_{i} \oplus m_{i}$
- One-time pad that can be generated in advance.
- attacker with < plaintxt, ciphertxt> can obtain b_{i} 's.

CFB: Cipher Feedback Mode

- Like OFB except that output c_{i-1} is used instead of b_{i}
- c_{0} is IV
- $c_{i} \leftarrow m_{i} \oplus E\left(\right.$ key,$\left.c_{i-1}\right)$

■ Cannot generate one-time pad in advance.

Counter mode (CTR)

Ciphertext
Decrypt? $m_{i}=D(k, I V+i) X O R c_{i}$

■ Like OFB, can encrypt in parallel
■ Initial IV must be random

- Don't use $I V$ for one msg and $I V+1$ for another msg

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

- A MAC detects any change to a msg // integrity

■ Signing $S: \quad m s g+$ key \longrightarrow tag // send msg, tag

■ Verification $V: \quad m s g+t a g+k e y \longrightarrow$ YES or NO

- YES iff msg was exactly that sent by key holder
- A MAC is secure if an attacker (w/o key)
- can issue msgs m_{1}, m_{2}, \cdots and get their tags t_{1}, t_{2}, \cdots but still cannot produce the valid tag t for any new msg m
// Existential forgery
■ MACs currently used: ECBC, SHA, SHA-3, others

MACs from Block Ciphers

MACs from Block Ciphers

- Encrypting msg (eg, CBC, CFB, OFB) does not provide integrity
- Modified ciphertext still decrypts to something

■ Encrypted CBC (ECBC): yields a MAC from a block cipher

- Signing S
- Input: msg, key, key'
- Apply CBC on msg using key and no IV
$/ / I V=0$
- Only the last cipherblock, say c, is needed
- tag $=E\left(k e y^{\prime}, c\right)$
- Verifying V
- Input: msg, key, key $^{\prime}$, tag
- YES iff $S\left(m s g\right.$, key, key $\left.^{\prime}\right)$ equals tag

ECBC vs CBC

■ Output only one block
// coz not recovering plaintext
■ Need two keys, otherwise attacker

- issues msg $\left[m_{1}, \cdots, m_{n}\right.$], gets tag $t=c_{n}$
- creates single-block msg m^{\prime}, gets tag t^{\prime} for $t \oplus m^{\prime}$
- t^{\prime} is valid tag for $m \| m^{\prime}$
// "||" is concatenation
- Both CBC and ECBC must be computed sequentially
- There are CTR-like MACs which permit parallel computation

■ Would using only one key with a random IV work?

- msg's tag is last cipherblock of CBC(key, IV\|msg)

MACs from Hash Functions

■ Hash function H

- arbitrary message $\longrightarrow k$-bit hash
(pre-image) (digest)
- msg space \gg hash space $\left(=2^{k}\right)$
- Does not take a key as input
- H is cryptographically secure if // "one-way"
- Pre-image resistant: hard to find m given $H(m)$
- Collision-resistant: hard to find $m \neq m^{\prime}$ s.t. $H(m)=H\left(m^{\prime}\right)$
- In fact, for any $m \neq m^{\prime}$, the probability that $H(m)$ and $H\left(m^{\prime}\right)$ are equal at any given bit index i is $1 / 2$

■ Assuming H is random, how large should k be?

- $\operatorname{Pr}\left(\right.$ collision in N random msgs $\left.m_{1}, \cdots, m_{N}\right)$
$=\operatorname{Pr}\left[H\left(m_{1}\right)=H\left(m_{2}\right)\right.$ or $H\left(m_{1}\right)=H\left(m_{3}\right)$ or $\left.\cdots\right]$
$\approx N(N-1) / 2 \times\left(1 / 2^{k}\right)$
$\approx N^{2} / 2^{k}$
■ Pr significant if $N^{2} \approx 2^{k}$, ie, if $N \approx \sqrt{2^{k}}$
- Choose k so that searching through $\sqrt{2^{k}} \mathrm{msgs}$ is hard
- So $k=128$ assumes searching through 2^{64} msgs is hard

■ MD5 (Message digest 5): 128-bit digest

- Known collision attacks, still frequently used
- SHA family
- SHA-1: 160-bit hash
// theoretically broken, but used
- SHA-256: 256-bit hash
- SHA-512
- etc

■ SHA-3 $(224,256,385,512)$
// standardized Aug 2015

Exam Internals of MD4 (128-bit hash)

■ Step 1: Pad msg to multiple of 512 bits

- pmsg $\leftarrow m s g \mid$ one $1 \mid p 0$'s $\mid(64$-bit encodng of p) // p in $1 . .512$
- Step 2: Process pmsg in 512-bit chunks to get hash md
- treat 128 -bit $m d$ as 4 words: $d_{0}, d_{1}, d_{2}, d_{3}$
- initialize to $01|23| \ldots|89| \mathrm{ab}|\mathrm{cd}|$ ef $|\mathrm{fe}| \mathrm{dc}|. .|$.
- For each successive 512 -bit chunk of pmsg:
- treat 512-bit chunk as 16 words: $m_{0}, m_{1}, \cdots, m_{15}$
- $e_{0} . . e_{3} \leftarrow d_{0} . . d_{3} \quad / /$ save for later
- pass 1 using mangler H 1 and permutation J

$$
/ / \text { for } i=0, \ldots, 15: \quad d_{J(i)} \leftarrow H 1\left(i, d_{0}, d_{1}, d_{2}, d_{3}, m_{i}\right)
$$

- pass 2: same but with mangler H2
- pass 3: same but with mangler H3
- $d_{0} . . d_{3} \leftarrow d_{0} . . d_{3} \oplus e_{0} . . e_{3}$
- $m d \leftarrow d_{0} . . d_{3}$
- MAC of a msg is a hash of some combination of msg and key
- $M A C(m s g)=H(k e y, m s g)$
- But need to be careful in how key and msg are combined

■ In particular, key\|msg is not good // "||" is concatenation

- This is because usually $H\left(m_{1} \| m_{2}\right)$ is $H\left(H\left(m_{1}\right) \| m_{2}\right)$
- Given a msg m_{1} and $H\left(\right.$ key $\left.\| m_{1}\right)$, attacker can get $H\left(\right.$ key \| $\left.m_{1} \| m_{2}\right)$ by doing $H\left(H\left(\right.\right.$ key,$\left.\left.m_{1}\right) \| m_{2}\right)$

■ HMAC: standard way to get MACs from Hashes

- HMAC takes any hash function H and any size key
- HMAC (key, msg, H)

$$
=H\left(\left(k^{\prime} y^{\prime} \oplus \text { opad }\right) \| H\left(\left(k^{\prime} y^{\prime} \oplus \text { ipad }\right) \| m s g\right)\right)
$$

- $k^{\prime} y^{\prime} \leftarrow$ key padded with 0's to H's input block size if key size > H's block size, first hash key
- opad $=0 \times 5 \mathrm{c} 5 \mathrm{c} \ldots 5 \mathrm{c}$ of H's block size // outer padding
. ipad $=0 \times 3636 \ldots 36$ of H's block size // inner padding

■ Encryption: $m_{1}, m_{2}, \cdots \longrightarrow c_{0}, c_{1}, c_{2}, \cdots$

- Generate pad: $b_{i} \leftarrow H\left(\right.$ key,$\left.b_{i}-1\right)$ where B_{0} is $I V$
- $c_{i} \leftarrow b_{i} \oplus m_{i}$
- send $I V, c_{1}, c_{2}, \cdots$
- Decryption identical

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

■ Encrypt || MAC: send $E(m s g)|\mid M A C(m s g)$

- $M A C(m s g)$ may reveal something about $m s g$
- Do not use

■ MAC then Encrypt: send E (msg \| MAC(msg))

- Can be insecure for some E and MAC combinations
- Do not use
- Encrypt then MAC: send $E(m s g) \| M A C(E(m s g))$
- MAC may reveal something of ciphertext, but that's ok
- Use this

Outline

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

Asymmetric Crypto: Encryption

■ Key generation

- Input: source of randomness and max key length L
- Output: pair of keys, each of size $\leq L$
- pk: "public" key
- sk: "secret (aka "private") key

■ Encryption $E_{P}(p k, m)$

- Input: public key $p k$; msg $m($ size $\leq L)$
- Add random pad to m
- Output: ciphertext $c($ size $\leq L)$

■ Decryption $D_{P}(s k, c)$
// executed by sk owner

- Input: secret key $s k$; ciphertext $c($ size $\leq L)$
- Output: original msg m

Asymmetric Crypto: Encryption

■ Key pair [pk, sk]

- Correctness
- $D_{P}\left(s k, E_{P}(p k, m)\right)=m$
- Security
- $E_{P}(p k, m)$ appears random
- Can only be decrypted with sk
// one-way
// trapdoor
- Hard to get $s k$ from pk

■ Hybrid encryption for arbitrary-size msg m

- generate symmetric key k
- symmetric encrypt $m: \quad c_{m}=E(k, m)$
- public-key encrypt $k: c_{k}=E_{P}(p k, k)$
- send $\left[c_{m}, c_{k}\right.$]

Asymmetric Crypto: Signatures

■ Key generation: public key pk, secret key sk
■ Signing Sgn(sk, m)
// executed by sk owner

- Input: secret key sk; msg m (size $\leq L$)
- Output: signature $s($ size $\leq L)$
- Verification function $\operatorname{Vfy}(p k, m, s) \quad / /$ executed by public
- Input: public key $p k$; msg m, signature s
- Output: YES iff s is a valid signature of m using $s k$

■ Correctness: $\operatorname{Vfy}(p k, m, \operatorname{Sgn}(s k, m))=$ YES

- Security: Even with pk and many [msg, sgn] examples, cannot produce existential forgery
- RSA, ECC: encryption and signatures

■ EIGamal, DSS: signatures
■ Diffie-Hellman: establishment of a shared secret

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

- Asymmetric crypto is based on modulo- n arithmetic

■ It seems magical. but it can be de-mystified with a bit of effort
■ What follows is brief look at some number theory

- Prime numbers
- Modulo- n addition, multiplication and exponentiation
- Euler's totient function and a theorem

■ Integer p is prime iff it is exactly divisible only by itself and 1.
■ $\operatorname{gcd}(p, q):$ greatest common denominator of integers p and q - Largest integer that divides both exactly.

■ p and q are relatively prime iff $\operatorname{gcd}(p, q)=1$
■ Infinitely many primes, but they thin out as numbers get larger

- 25 primes less than 100
- $\operatorname{Pr}[$ random 10 -digit number is a prime $] \approx 1 / 23$
- $\operatorname{Pr}[$ random 100-digit number is a prime $] \approx 1 / 230$
- $\operatorname{Pr}[$ random k-digit number is a prime $] \approx 1 /(k \cdot \ln 10)$
$\square Z_{n}=\{0,1, \cdots, n-1\}$
■ Modulo- n : integers $\longrightarrow Z_{n} \quad / /$ includes negative integers
- $x \bmod -n \quad$ for any integer x

$$
\begin{aligned}
& =y \text { in } Z_{n} \text { st } x=y+k \cdot n \text { for some integer } k \\
& =\text { non-negative remainder of } x / n
\end{aligned}
$$

- Examples
- $3 \bmod -10=3$

$$
/ / 3=3+0 \cdot 10
$$

- $23 \bmod -10=3$
// $23=3+2 \cdot 10$
- $-27 \bmod -10=3$

$$
/ /-27=3+(-3) \cdot 10
$$

Note: mod- n of negative number is non-negative
$■(a+b) \bmod -n \quad$ for any integers a and b

- Examples
- $(3+7) \bmod -10=10 \bmod -10=0$
- $(3-7) \bmod -10=-4 \bmod -10=6$
- Additive-inverse-mod- n of x
- y st $(x+y) \bmod -n=0$
// aka $-x$ mod-n
// st: such that
- exists for every x
- easily computed: $(n-x) \bmod -n$
$\square(a \cdot b) \bmod -n \quad$ for any integers a and b
■ Examples
- (3.7) mod-10 $=21 \bmod -10=1 \quad / /$ "." is multiplication
- $8 \cdot(-7) \bmod -10=-56 \bmod -10=4$

■ Multiplicative-inverse-mod- n of x
// aka $\quad x^{-1} \bmod -n$

- y st $(x \cdot y) \bmod -n=1$
- exists iff $\operatorname{gcd}(x, n)=1 \quad / / x$ relatively prime to n
- Easily computed by Euclid's algorithm
- $\operatorname{Euclid}(x, n)$ returns u, v st $\operatorname{gcd}(x, n)=u \cdot x+v \cdot n$
- if $\operatorname{gcd}(x, n)=1: \quad u=x^{-1} \bmod -n$ and $\quad v=n^{-1} \bmod -x$
$\square\left(a^{b}\right) \bmod -n \quad$ for any integer a and integer $b>0$
- Examples
- $3^{2} \bmod -10=9$
- $3^{3} \bmod -10=27 \bmod -10=7$
- $(-3)^{3} \bmod -10=-27 \bmod -10=3$

■ Exponentiative-inverse-mod- n of x

- y st $\left(x^{y}\right) \bmod -n=1$
- exists iff $\operatorname{gcd}(x, n)=1$
- easily computed given prime factors of n // only way known

■ $Z_{n}{ }^{*}=\left\{x\right.$ in $\left.Z_{n}, \operatorname{gcd}(x, n)=1\right\}$

$$
/ / Z_{10}^{*}=\{1,3,7,9\}
$$

■ $\phi(n)$: number of elements in $Z_{n}{ }^{*}$

$$
/ / \phi(10)=4
$$

■ Euler's Totient Function // Exam

$$
\phi(n)= \begin{cases}n-1 & \text { if } n \text { prime } \\ \phi(p) \cdot \phi(q) & \text { if } n=p \cdot q \text { and } \operatorname{gcd}(p, q)=1 \\ (p-1) \cdot p^{a-1} & \text { if } n=p^{a}, p \text { prime, } a>0 \\ \phi\left(p_{1} a_{1}\right) \cdots \phi\left(p_{K} a_{K}\right) & \text { if } n=p_{1} a_{1} \cdots p_{K} a_{K}\end{cases}
$$

■ If p, q distinct primes: $\phi(p \cdot q)=(p-1) \cdot(q-1)$

Euler's Theorem:
If $n=p \cdot q$ for distinct primes p and q, then

$$
a(k \cdot \phi(n)+1) \bmod -n=a \bmod -n
$$

for any a and $k>0$

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

- RSA: Rivest, Shamir, Adleman

■ Key size variable and much longer than secret keys

- at least 1024 bits (250 decimal digits)
- Data block size is variable but smaller than key size
- Ciphertext block is same size as key size.
- Orders slower than symmetric crypto algorithms (eg, AES)
- So use hybrid encryption for large messages

■ Choose two large primes, p and q
// keep p and q secret

- Let $n=p \cdot q$

■ Choose e relatively prime to $\phi(n)$

$$
/ / \phi(n)=(p-1) \cdot(q-1)
$$

$■$ Public key $=[e, n]$
■ Let $d=$ mult-inverse- $\bmod -\phi(n)$ of e
■ Private key $=[d, n]$
// make this public
$/ / e \cdot d \bmod -\phi(n)=1$
// keep d secret

■ Encryption of message msg using public key

- $m \leftarrow$ add random pad to $m s g$

```
// PKCS, OASP
```

- ciphertext $c \leftarrow m^{e} \bmod -n$

■ Note:

- PKCS and OASP are padding standards
- m must be less than n

■ Decryption of ciphertext c using private key

- plaintext $m \leftarrow c^{d} \bmod -n \quad / / \operatorname{coz} m e \cdot d \bmod -n=m$
- msg \leftarrow remove pad from m
- $m^{e \cdot d} \bmod -n$
$=m^{1+k \cdot \phi(n)} \bmod -n$ for some k
$=m \bmod -n$
$=m$
$/ / e \cdot d \bmod -\phi(n)=1$
// Euler's theorem
$/ / m$ in Z_{n}
- Signing message msg using private key
- $m \leftarrow$ add pad to $m s g$
- signature $s \leftarrow m^{d} \bmod -n$
- Verifying signature s using public key
- $m \leftarrow s^{e}$ mod- n

$$
/ / \operatorname{coz} m^{e \cdot d} \bmod -n=m
$$

- YES iff m equals $m s g$ with pad

■ Only known way to obtain m from $x=m^{e} \bmod -n$ is by $x^{d} \bmod -n \quad$ where $d=e^{-1} \bmod -\phi(n)$

■ Only known way to obtain $\phi(n)$ is with p and q
■ Factoring number is believed to be hard, so hard to obtain p and q given n

- Best current algorithms: $\exp \left(n . l e n^{1 / 3}\right)$
- Currently n.len of 1024 for OK security
- Use n.len of 2048 to be sure
- Decade: n.len of 3072 to be sure

■ RSA operations (encrypt, decrypt, etc) require computing m^{e} mod- n for large (eg, 200-digit) numbers m, e, n

■ Simple approach is not feasible

- Multiply m with itself, take mod n; repeat e times.
- e multiplications and divisions of large numbers.

■ Much better:

- Exploit $m^{2 x}=m^{x} \cdot m^{x}$ and $m^{2 x+1}=m^{2 x} \cdot m$
- $\log e$ multiplications and divisions

Exam Modulo_Exponentiation (m, e, n)

$■\left(x_{0}, x_{1}, \cdots, x_{k}\right) \leftarrow e$ in binary

$$
/ / x_{0}=1
$$

■ initially $y \leftarrow m ; j \leftarrow 0$
$/ / y=m^{x_{0}}$

- while $j<k$
- // loop invariant: $y=m\left(x_{0}, \cdots, x_{j}\right) \bmod -n$
- $y \leftarrow y \cdot y \bmod -n ; \quad / / \quad y=m\left(x_{0}, \cdots, x_{j}, 0\right) \bmod -n$
- if $x_{j}+1=1$

$$
y \leftarrow y \cdot m \bmod -n
$$

$$
/ / y=m\left(x_{0}, \cdots, x_{j}, 1\right) \bmod -n
$$

- $j \leftarrow j+1$

$$
/ / y=m\left(x_{0}, \cdots, x_{j}\right) \bmod -n
$$

■ // $y=m^{e} \bmod -n$

- 54 in binary is $(1101110)_{2}$
- $123^{(1)} \bmod -678=123$
- $123^{(10)} \bmod -678=123 \cdot 123 \bmod -678=15129 \bmod -678=213$
- $123^{(11)} \bmod -678=213 \cdot 123 \bmod -678=26199 \bmod -678=435$
- $123{ }^{(110)} \bmod -678=435.435 \bmod -678=1889225 \bmod -678=63$
- $123^{(1100)} \bmod -678=63.63 \bmod -678=3969 \bmod -678=579$
- $123^{(1101)} \bmod -678=579 \cdot 123 \bmod -678=71217 \bmod -678=27$
- $123^{(11010)} \bmod -678=27 \cdot 27 \bmod -678=729 \bmod -678=51$
- $123^{(11011)} \bmod -678=51 \cdot 123 \bmod -678=6273 \bmod -678=171$
- $123{ }^{(110110)} \bmod -678=171 \cdot 171 \bmod -678=29241 \bmod -678=87$
- There are two parts to RSA key generation
- Finding big primes p and q
- Finding e relatively prime to $\phi(p \cdot q) \quad / /=(p-1) \cdot(q-1)$
- Note: given e, easy to obtain $d=e^{-1} \bmod -\phi(n)$
- Choose random n and test for prime. If not prime, retry.

■ No practical deterministic test.

- Simple probabilistic test
- Generate random n and random a in $1 . . n$
- Pass if $a^{n-1} \bmod -n=1 / /$ converse to Euler's theorem
- Prob failure is low $/ / \approx 10^{-13}$ for 100-digit n
- Can improve by trying different a's.
. But Carmichael numbers: $561,1105,1729,2465,2821,6601, \ldots$
■ Miller-Rabin probabilistic test
- Better and handles Carmichael numbers
- Approach 1
- Choose random primes p and q as described above
- Choose e at random until e relatively prime to $\phi(p . q)$
- Approach 2
- Fix e st m^{e} easy to compute (i.e., few 1's in binary)
- Choose random primes p and q st e relatively prime to $\phi(p . q)$
- Common choices
- $e=2^{1}+1=3$
$/ / m^{3}$ requires 2 multiplications
- $e=2^{16}+1=65537$
$/ / m^{e}$ requires 17 multiplications
- PKCS \#1 v1.5
- Defines padding of msg being encrypted/signed in RSA
- Padded msg is 1024 bits

■ Encryption (fields are octets)

0	2	\geq eight random non-zero octets	0	data

\square Signing (fields are octets)

- | 0 | 1 | \geq eight $9 F_{16}$ octets | 0 | digest type and digest |
| :--- | :--- | :--- | :--- | :--- |

Overview

Symmetric Crypto
Block Cipher
Encryption Modes for Variable-size Messages
Message Authentication Codes (MACs)
MAC and Confidentiality
Asymmetric Crypto (aka Public-Key Crypto)
Introduction
A Little Bit of Number Theory
RSA
Diffie-Helman

■ Establishes a key over open channel without a pre-shared secret
■ Inputs (public): prime p and generator g for p

- $1<g<p$ st $g^{i} \bmod -p$ ranges over $1, \cdots, p-1$
- Protocol

Alice
Bob
choose random x
$A \leftarrow g^{X} \bmod -p$
send A
choose random y
$B \leftarrow g^{y} \bmod -p$
send B
$K \leftarrow A^{y} \bmod -p$
$K \leftarrow B^{X} \bmod -p$
■ Alice. $K=$ Bob. $K=g^{x} \cdot y \bmod -p$
// shared key
$■$ Hard to get $g^{x \cdot y} \bmod -p$ from p, g, g^{x} and g^{y}

- Multiplying g^{x} and g^{y} yields $g^{x+y ~ / / ~ n o t ~ u s e f u l ~}$
- Hard to get x from g^{X} mod- p Discrete-log problem
- Hard to get y from $g^{y} \bmod -p$

■ DH allows two principals who share nothing to establish a shared secret over an insecure channel

■ DH does not authenticate the principals to each other

- Alice may be talking to Trent claiming to be Bob

■ For authentication, principals must already share something, eg:

- Alice and Bob share a secret symmetric key
- Alice and Bob each have the other's public key
- Alice and Bob each share a key with a trusted third party
- it generates a new key and sends it securely to Alice and Bob
- it securely sends the public keys of Alice and Bob to the other

■ DH that incorporates a pre-shared key to provide authentication

- Suppose Alice and Bob share a secret symmetric-crypto key k

■ Can do authenticated DH by using k to encrypt the DH msgs

- Alice sends $E\left(k, g^{X} \bmod -p\right)$
- Bob sends $E\left(k, g^{y} \bmod -p\right)$
- If principals are Alice and Bob: get shared key $\left(g^{x \cdot y} \bmod -p\right)$ Otherwise the principals would not achieve a shared key, so ok
- Can do similar authenticated DH if Alice and Bob have each other's public key

■ If Alice and Bob share a secret key k, they can achieve secure communication simply by encrypting msgs with k

- What is gained by using k to do authenticated DH
- The DH key would be strong whereas k may be weak (eg, obtained from a password)
- Perfect-forward secrecy: If they forget their DH private keys after their session, then the session data remains secure even if k is later exposed

