
Authentication

Shankar

April 11, 2017

Outline overview

Overview

Authentication basics

Authenticating humans

Storing passwords at servers

Scaling to many users and domains

KDC: Key Distribution Center

CA: Certi�cation Authority

Authentication framework overview

Principals are application clients and servers interacting over
TCP/UDP in an insecure network (eg, Internet)

Principals establish sessions, exchange data, close sessions

Attacks

Network attacks: listen, intercept msgs, resend modifed msgs

Endpoint: malicious/compromised user

Authentication goals:

Ensure that session peers are who they say they are

Establish session key(s) for data con�dentiality/integrity

better to use temporary keys than long-term keys

TCP-based session: without authentication overview

recv()

send(data)

data

recv()

client servertcp tcp

data

send(data)

open

connect(x2)

<ip addr, port #>

close() close()

accept()

accepting

open

closing

closed

connecting

open

closing

closed

open to x1

tcp closing

[x1, x2, ..., [data]]

x1 B

[x2, x1 ..., [data]]

[x1, x2, ACK, ...]

x2

[x2, x1, SYNACK, ...]

[x1, x2, SYN, ...]

A

TCP-based session: attacks overview

endpoint attacks network attacks

data

recv()

send(data)

client servertcp tcp

endpoint attacks

data

recv()

send(data)

<ip addr, port #>

close() close()

open

accepting

open

closing

closed

connecting

open

closing

closed

connect(x2)
accept()

open to x1
[x2, x1, SYNACK, ...]

x1 B

[x1, x2, SYN, ...]

[x1, x2, ACK, ...]

[x1, x2, ..., [data]]

x2

tcp closing

[x2, x1 ..., [data]]

A

TCP-based session: with authentication overview

client servertcp tcp

open

connect(x2)
accept()

open to x1

<ip addr, port #>

close() close()

closed

accepting

open

closing

closed

connecting

open

closing

x2x1 BA

tcp closing

tcp conn establishment

tcp data exchange

authenticated secure

data exchange

Dictionary (aka password-guessing) attacks overview

Weak secret (aka low-quality secret)

comes from a space small enough for a brute-force search
eg: passwords, and keys obtained from them

Strong secret (aka high-quality secret): not weak

eg: key with 128 random bits

Dictionary attacks (aka password-guessing attacks)

Given ciphertext from structured plaintext and weak key,
decrypt with every possible key until structure appears

Online attack: interact with authenticator at every guess

Defense: limit number/frequency of attempts

O�ine attack: interact with authenticator just once

Defense: don't expose relevant ciphertext

Conventions: Crypto overview

Symmetric crypto

E (key ,msg): encrypt msg with key // includes any IV

D(key , ctx): decrypt ctx with key // includes any IV

Hash

H(msg): hash of msg // eg, SHA-1

H(key ,msg): keyed-hash // eg, HMAC-SHA-1

Asymmetric crypto // public-key pair [sk , pk]

EP(pk ,msg): encrypt msg (with public key)

DP(sk ,msg): decrypt msg (with secret key)

Sgn(sk ,msg): signature of msg (using secret key)

Vfy(pk ,msg , s): verify signature s of msg (with public key)

Conventions: Nonces overview

Nonce: new value // new = never before seen

Can be predictable or random

Predictable: given one value, attacker can guess the next one

Random: not predictable // physical randomness, crypto output

Outline auth basic

Overview

Authentication basics

Authenticating humans

Storing passwords at servers

Scaling to many users and domains

KDC: Key Distribution Center

CA: Certi�cation Authority

A,B share symmetric key k auth basic

client A (key k for server B) server B (has key k for user A)

send [A,B , conn]
rcv [A,B , conn]
cB ← random // server challenge
send [B ,A, cB]

rcv [B ,A, cB]
cA ← random // client challenge
rB ← E (k , cB) // client response
send [cA, rB] rcv [cA, rB]

if (rB 6= E (k , cB)) FAIL
rA ← E (k , cA) // server response
send [rA]
session key ← Func(cA, cB , k)rcv [rA]

if (rA 6= E (k , cA)) FAIL
session key ← Func(cA, cB , k)

A,B share symmetric key k (cont) auth basic

Many variations of challenge/response

open challenge, encrypted response // cA → E (k , cA)

encrypted challenge and response // E (k , cA) → E (k , cA + 1)

O�ine dictionary attack if k is weak and

attacker can eavesdrop, or

attacker can attach to B 's net address

If client issues challenge �rst and k is weak,
can do o�ine dictionary attack without attacking network

attacker sends challenge, gets response

A,B have each other's public key auth basic

client A (has [skA, pkA], pkB) server B (has [skB , pkB], pkA)

cA ← random // challenge
send [A,B , conn, EP(pkB , cA)] rcv [A,B , conn, yA]

cA ← DP(skB , yA)
cB ← random // challenge
send [B ,A, EP(pkA, [cB , cA])] //resprcv [B ,A, yB]

[cB , rA] ← DP(skA, yB)
if (rA 6= cA) FAIL
send [EP(pkB , cB)] // response
session key ← Func(cA, cB) rcv [yB]

rB ← DP(skB , yB)
if (rB 6= cB) FAIL
session key ← Func(cA, cB)

Safe from dictionary attack // asymmetric keys always strong

A has pkB ; A,B share symm key k auth basic

client A (has k , pkB) server B (has [skB , pkB], k)

cA ← random // challenge
send [A,B , conn, EP(pkB , cA)] rcv [A,B , conn, yA]

rA ← DP(skB , yA) // response
cB ← random // challenge
send [B ,A, cB , rA)] // plaintextrcv [B ,A, cB , rA]

if (rA 6= cA) FAIL
rB ← E (k , cB) // response
send [EP(pkB , rB)]
session key ← Func(cA, cB , k) rcv [yB]

rB ← DP(skB , yB)
if (D(k , rB) 6= cB) FAIL
session key ← Func(cA, cB , k)

Warning: the above session key is weak if k is weak // Why?
Better to use DH to get a strong session key

Authenticated Di�e-Helman auth basic

Authenticated DH: incorporate a pre-shared key into DH

If A and B share a symmetric key k , here are two ways

1.Encrypt DH public keys with k

A sends E (k , gSA mod-p)

B sends E (k , gSB mod-p)

shared key: gSA·SB mod-p

2.Do usual DH, then exchange keyed-hashes of DH key.

Secure against dictionary attack even if k is weak!

If A and B have each other's public key, here are two ways

1.Encrypt DH quantities with receiver's public key

2.Sign DH quantities with sender's private key

Session Keys auth basic

Should di�er from long-term key used for authentication

to avoid long-term key �wearing out� (o�ine crypto attack)

Should be forgotten after session ends

Should be unique for each session

if compromised, only a�ects data sent in that session

can give to untrusted software // delegation

Delegation

A,B share key k

A wants C to access B on A's behalf

Two solutions to delegation

1.A gives C the shared key k // terrible!

2.A gives C a ticket: E (k , [allowed ops, expiry time, ...])

Outline auth humans

Overview

Authentication basics

Authenticating humans

Storing passwords at servers

Scaling to many users and domains

KDC: Key Distribution Center

CA: Certi�cation Authority

Identifying a human auth humans

What we know

password, date-of-birth, address, etc

Cons: exposed when used

What physical object we hold

badges, keys, smart card (with strong crypto)

Cons: object must be di�cult to forge, tamper, reverse engineer

What physical property we have (biometrics)

�ngerprint, face, iris

Cons: not hard to forge

Others: where we are, how we react� where we travel, etc

Cons: easy to forge

Typically use a combination of methods

eg: password, browser �ngerprint, location, ...

Passwords auth humans

Setting a password

A chooses a password that is hard to guess // how hard?

A shares it securely with B , which stores it

Logging in

A provides B the password; B checks it

A is authenticated i� match

If no match: B may delay next login attempt to A

Recovering a forgotten password

Falling back to some other form authentication

pre-speci�ed email or phone

visit o�ce with physical id

What do strong passwords get us auth humans

Strong password

Hard to guess; includes symbols, mixed case, etc
Dictionary attack doable, but more work than weak pwd

Online dictionary attack

Defense: limit on number of wrong logins

Targted victim: strong pwd doesn't help

Any victim (stop at �rst success): strong pwd helps

O�ine dictionary attack

Targeted victim: strong pwd doesn't help (unless very strong)

Any victim: strong pwd helps (if many others have weak pwds)

Outline pwds@srvr

Overview

Authentication basics

Authenticating humans

Storing passwords at servers

Scaling to many users and domains

KDC: Key Distribution Center

CA: Certi�cation Authority

Storing passwords at server pwds@srvr

Assume an attacker that has access to server �lesystem

Attempt 1: store [usr , pwd] pairs in plaintext �le: worthless

Attempt 2: store [usr , pwd] pairs in encrypted �le

worthless if encryption key is also in �lesystem

Attempt 3: store hashes of passwords

store [usr , h] pairs in plaintext �le, where h = H(pwd)

when A logs in with pwd , check if H(pwd) = h

Good: pwd is never in �lesystem, only brie�y in memory

Bad: vulnerable to dictionary attack

attacker precomputes {H(pi)} for candidate pwds p1, p2, ...

checks each H(pi) against the h's of all users

Storing passwords at server (cont) pwds@srvr

Attempt 4: store hashes of salted passwords

salt is a random nonce, di�erent for each user

store [usr , salt, h] triples, where h = H(salt‖pwd)
when A logs in with pwd , check if H(salt‖pwd) = h

Dictionary attack still doable but more work

candidate hashes {H(pi)} cannot be precomputed

each candidate hash applies only to one user

Attempt 5: store k-fold hashes of salted passwords

store [usr , salt, h] triples, where h = Hk(salt‖pwd)
Hk(x) = H(H(· · ·H(x) · · ·)) k times // slow hash

Dictionary attack still doable but work increases k times

Outline scaling

Overview

Authentication basics

Authenticating humans

Storing passwords at servers

Scaling to many users and domains

KDC: Key Distribution Center

CA: Certi�cation Authority

Scaling to N users scaling

Naive approach using symmetric keys

Every principal shares a key with every other principal

Not scalable

N2 storage at each principal

N cost for adding/removing principal

Naive approach using asymmetric keys has similar problems

Symmetric-key solution: key distribution center (KDC)

Asymmetric-key solution: certi�cation authority (CA)

Brings up new attacks involving no-longer-valid master keys

a TOCTOU vulnerability

Domain: set of principals covered by one KDC or CA

Outline kdc scaling

Overview

Authentication basics

Authenticating humans

Storing passwords at servers

Scaling to many users and domains

KDC: Key Distribution Center

CA: Certi�cation Authority

Domain with a KDC kdc scaling

KDC is a special principal in the domain (= network usually)

Every other principal z shares a master key, say kz , with KDC

A-B session: A gets [session key, ticket for B] from KDC

client A (has kA) KDC (has kA, kB) server B (has kB)

send [A,B] to KDC rcv [A,B]
S ← random // session key
tA ← E (kA, [A,B , S])
tB ← E (kB , [A,B , S])
send [tA, tB] to A

rcv [tA, tB]
·, ·, S ← D(kA, tA)
send [A,B , tB] rcv [A,B , tB]

·, ·, S ← D(kB , tB)

Above is incomplete: eg, vulnerable to replay of S

Trust model, pros, cons kdc scaling

Trust the KDC to not

issue weak keys, reuse keys, read msgs, impersonate others, etc
go o�ine

Advantages of KDC

Adding new principal D: one interaction between D and KDC
Revocation of principal D: deactivate D's master key at KDC

Disadvantages of KDC

KDC compromise makes the entire network vulnerable.
KDC failure means no new sessions can be started.
KDC can be a performance bottleneck.

Replicating KDC �xes the last two disadvantages, but then
need to protect replicas and keep them in sync

if master key changes, need to handle tickets issued with old key

Cross-domain session kdc scaling

A's KDC is X B 's KDC is Y X ,Y share key kXY

A: send [A,B .Y] to X

X : generate session key kAY // for A�Y session
tXA ← E (kAX , [A,Y , kAY]) // kAX : A-X key
tXY ← E (kXY , [A,Y , kAY]) // kXY : X -Y key
send [tXA, tXY] to A

A: extract kAY from tXA; send [A.X , B , tXY] to Y

Y : extract kAY from tXY
generate session key kAB // for A-B session
tYA ← E (kAY , [A,Y , kAB])
tYB ← E (kBY , [A,Y , kAB]) // kBY : B-Y key
send [tYA, tYB] to A

A: extract kAB from tYA; send [A, B , tYB] to Y

B : extract kAB from tYB // A,B now share kAB

Cross-domains session A.X1-X2-· · · -B .XN kdc scaling

A gets [session key kA,X2
, ticket tX1,X2

] from X1

A gets [session key kA,X3
, ticket tX2,X3

] from X2

· · ·
A gets [session key kA,B , ticket tXN ,B] from XN

A sends [ticket tXN ,B] to B

Better: A passes along the sequence of KDCs traversed, so that
B sees the entire KDC-chain rather than just XN

Kerberos: Unix KDC implemenation kdc scaling

Kerberos 1

Kerberos 2

Commonly used in enterprise-level networks

Handles

Changing master keys

Tickets: long-lived, post-dated, delegation, etc

Handles variety of crypto, hw architecture, etc

Compensates for weak keys (human users)

X-servers

Cross-domains authentication

lots more

Outline ca scaling

Overview

Authentication basics

Authenticating humans

Storing passwords at servers

Scaling to many users and domains

KDC: Key Distribution Center

CA: Certi�cation Authority

Domain with a CA � 1 ca scaling

Every principal z has a public-key pair [skz , pkz]

except some human principals may use passwords

CA is a special principal, say with id X

CA is trusted to create correct certi�cates

CA issues a certi�cate for every z : [z , pkz , expiry time, · · · , sgn]
sgn: CA's signature of the certi�cate // using skX
certi�cate is typically long-lived // eg, months, years

CA can revoke z 's certi�cate before expiry if needed

eg: skz has become exposed, z leaves the domain, etc

Every z has CA's public key

so z can verify certi�cates and their status (revoked or not)

Domain with a CA � 2 ca scaling

To acquire y 's public key

get y 's certi�cate and and verify // using pkX
get certi�cate's status and verify

can get these from anywhere // eg, y , a server, CA

CA makes certi�cate status info available in two ways

Periodically issues a certi�cate revocation list (CRL)

list of all revoked unexpired certi�cates, signed by CA

unexpired certi�cate valid if it's not in a recent-enough CRL

On demand: issues a certi�cate's status (CS)

Online Certi�cate Status Protocol (OCSP)

CA (or its agent) must be online and responsive

Certi�cates ca scaling

Certi�cate for Z issued by X

serial number // for CRL

issuer: X 's name, address, ...

subject: Z 's name, address, ...

subject's public-key: pkZ
expiry time // long-lived: month, year, ...

certi�cate's capabilities // eg, can Z issue certi�cates?

...

X 's signature on above

CRLs and CSs ca scaling

CRL issued by X

issuer: X 's name, address, ...

issue time // frequent: hourly, daily, ...

list of serial numbers of all revoked unexpired certi�cates

X 's signature on above

CRL is typically huge // burden on client

Certi�cate status (CS) of a certi�cate issued by X

serial number of certi�cate
issuer: X 's name, address, ...
issue time // should be recent
status: still valid or no longer valid // as of issue time

OCSP takes time // burden on client

OCSP stapling: server provides CS (and certi�cate) to client

Obtaining Z 's public-key ca scaling

Do step 1 and either step 2 or step 3

1. Obtain a certi�cate for Z issued by X .

Check that the certi�cate has not expired.

Verify the certi�cate's signature. // using pkX

2. Obtain a recent-enough CRL issued by X that
does not contain the certi�cate's serial number.

Verify the CRL's signature. // using pkX

or

3. Obtain a recent-enough CS (certi�cate status) issued by X
that indicates the certi�cate is still valid

Verify the CS's signature. // using pkX

Handling users without public keys ca scaling

Consider client A and server B , where

B has public key

A does not have a public key

A shares pwd with B

A�B session establishment

A obtains B 's public key // using standard procedure

A sends EP(pkB , pwd) to B

Trust model, pros, cons ca scaling

Trust the CA to

correctly vet principals
be online to handle OCSP requests
CA is the trust root // its public key is not veri�ed

Advantages of CA (vs KDC)

CA can be o�ine // if separate OCSP server

CA does not participate in A�B session

CA cannot decrypt A�B session
(but it can impersonate a principal via false certi�cate)

CA failure does not stop new sessions until certs expire

Disadvantages

Timely revocation is expensive // sloppily done in Internet

Certi�cate chains: crossing domains ca scaling

How does A verify B 's public key if

A has a certi�cate issued by CA X // certXA
B has a certi�cate issued by CA Y // certYB

Solution: X issues a certi�cate for Y // certXY
A veri�es pkY using certXY and csXY // csXY : revocation info

A veri�es pkB using pkY , certYB , csYB

[certXY , csXY], [certYB , csYB] is a certi�cate chain

Certi�cate chain: [cert1, cs1], [cert2, cs2], · · · , [certn, csn]
[certj , csj] veri�es public-key of certj+1's issuer
cert1's issuer is the anchor of the chain
certn's subject is the target of the chain
A can use the chain if the anchor is a trust root of A

PKI: Public-Key Infrastructure ca scaling

PKI is hierarchical

Top-level CAs

Verisign, Comodo, Thawte, etc
Their public keys are pre-con�gured in OS/browsers/...

Mid-level CAs

Have certi�cates from top-level/mid-level CAs
Issue certi�cates
Reputable and not // certi�cates for $10

Low-level CAs // individuals and small organizations

May not have certi�cates issued by others
May issue certi�cates for internal use, accepted on faith

Web of Trust ca scaling

Non-hierarchical PKI

pioneered by PGP

Anyone can issue certi�cates for people they know

Directed graph of certi�cate chains can have cycles

How to decide whether to trust a certi�cate chain?

anchor and intermediates
length of chain // shorter is better
how many other chains end at the same target
...

How to decide whether to issue a certi�cate for someone?

reputation, appearance, ... ???

	Overview
	Authentication basics
	Authenticating humans
	Storing passwords at servers
	Scaling to many users and domains
	KDC: Key Distribution Center
	CA: Certification Authority

