Crypto tidbits:
misuse, side channels

Slides from
* Dave Levin 414-spring2016

An Empirical Study of Cryptographic Misuse |
in Android Applications 'i

Manuel Egele, David Brumley Yanick Fratantonio, Christopher Kruegel
Carnegie Mellon University University of California, Santa Barbara
{megele,dbrumley}@cmu.edu {yanick,chris}@cs.ucsb.edu

A paper from 2013 that looked at how Android
apps use crypto, as a function of 6 “rules” that reflect
the bare minimum a secure programmer should know:

Manuel Egele, David Brumley
Carnegie Mellon University

{megele,dbrumley}@cmu.edu

An Empirical Study of Cryptographic Misuse |

in Android Applications

Yanick Fratantonio, Christopher Kruegel
University of California, Santa Barbara

{yanick,chris}@cs.ucsb.edu

A paper from 2013 that looked at how Android

apps use crypto, as a function of 6 “rules” that reflect
the bare minimum a secure programmer should know:

1.
2.
3.

DO
DO

BJe

N0l
N0l

not
4. (see paper)
5. (see paper)
6. Do not use static seeds to seed SecureRandom(.)

U
U

U

se ECB mode for encryption. Period.
se a non-random IV for CBC encryption.
se constant encryption keys.

Crypto misuse in Android apps

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

apps | violated rule

48%| 5,656 Uses ECB (BouncyCastle default) (R1)
31%| 3,644 Uses constant symmetric key (R3)

17%| 2,000 Uses ECB (Explicit use) (R1)

16%| 1,932 Uses constant IV (R2)

1,636 Used iteration count < 1,000 for PBE(R5)
14%| 1,629 Seeds SecureRandom with static (R6)
1,574 Uses static salt for PBE (R4)

12%| 1,421 No violation

BouncyCastle defaults

 BouncyCastle is a library that conforms to Java'’s
Cipher mterfaoe ,

C1pher c -
| Cipher.getInstance(“AES/CBC/PKCS5Padding);

1// Ultimately end up wrapping a ByteArrayOutputStream:
[// in a CipherOutputStream |

e Java documentation specifies:

Vva no mode or paddmg is spemﬁed pr0v1der spemﬁc default values for the mode and o
padding scheme are used. For example, the SUnJ CE prowder uses ECB as the
 default mode, and PKCS5Padding as the default padding scheme for DE S,

| DES-EDEand Blowfishciphes

#Occurences | Symmetric encryption scheme
5878 AES/CBC/PKCS5Padding
4803 AES *

1151 DES/ECB/NoPadding

741 DES *

501 DESede *

473 DESede/ECB/PKCS5Padding
468 AES/CBC/NoPadding

443 AES/ECB/PKCS5Padding
235 AES/CBC/PKCS7Padding
221 DES/ECB/PKCS5Padding
220 AES/ECB/NoPadding

205 DES/CBC/PKCS5Padding
155 AES/ECB/PKCS7Padding
104 AES/CFB8/NoPadding

Table 4: Distribution of frequently used symmetric
encryption schemes. Schemes marked with * are
used in ECB mode by default.

48%
31%
17%
16%

14%

12%

Crypto misuse in Android apps

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

apps | violated rule

5,656 Uses ECB (BouncyCastle default) (R1)
3,644 Uses constant symmetrlc kéy (R3)

2,000 Uses ECB (Explicit use) (R1)

1,932 | Uses constant IV (R2)

1,636 Used iteration count < 1,000 for PBE(RS5)
1,629 Seeds SecureRandom with static (R6)
1,674 Uses static salt for PBE (R4)

1,421 No violation

Number of distinct applications

10000

1000

100

10

0 1 2 3 4 5 6

Number of distinct violated rules

A tailure of the programmers to know the tools they use

A failure of library writers to provide safe defaults

Side-channel attacks

* Cryptography concerns the theoretical difficulty in
breaking a cipher

Input Cryptographic processing Qutput
message (Encrypt/decrypt/sign/etc.) message

Side-channel attacks

* Cryptography concerns the theoretical difficulty in
breaking a cipher

Input Cryptographic processing Qutput
message (Encrypt/decrypt/sign/etc.) message

 But what about the information that a particular
implementation could leak”

- Attacks based on these are “side-channel attacks”

Side-channel attacks

* Cryptography concerns the theoretical difficulty in

breaking a cipher
Leaked information

- Power consumption
- Electromagnetic radiation
- Other (Timing, errors, etc.)

Input . Cryptographic processing Qutput

message (Encrypt/decrypt/sign/etc.) message

 But what about the information that a particular
implementation could leak”

- Attacks based on these are “side-channel attacks”

Simple Power Analysis (SPA)

* Interpret power traces taken during a
cryptographic operation

e Simple power analysis can reveal the sequence of
instructions executed

SPA on DES

-
N
o

o~
o

w
~
O

PN

(%)

W
> O
=

Current (mA)

.(*) .
e

2.75]

0 0.8 1.6 2.4 3.2 _ 4.0 4.8 5.6 6.4
Time (mS)

Figure 1: SPA trace showing an entire DES operation.

Overall operation clearly visible:
Can identify the 16 rounds of DES

7.2

8.0

SPA on DES

Y
N »
SIS
=N
N
w
o=

w
~
O

A

(%)

W
o O
=

Current (mA)

Dow
o ©

f

5 6 7 8 9 10 11 12 13 14 15 16

[

0 0.8 1.6 2.4 5.6 6.4

3.2 . 4.0 4.8
Time (mS)

Figure 1: SPA trace showing an entire DES operation.

Overall operation clearly visible:
Can identify the 16 rounds of DES

7.2

8.0

SPA on DES

1 2 3 4 5 6 7
Time (in 3.5714MHz clock cycles)

Figure 3: SPA trace showing individual clock cycles.

Specific instructions are also discernible

SPA on DES

Jump taken

N

; ; 3 i 5 : 4
Time (in 3.5714MHz clock cycles) No lump taken

Figure 3: SPA trace showing individual clock cycles.

Specific instructions are also discernible

HIgh-level Idea

HypotheticalEncrypt(msg, key) {
for(int 1=0; 1 < key.len(); 1++) {
1fCkey[1] == 0)
// branch 0
else
// branch 1

High-level idea

HypotheticalEncrypt(msg, key) {
for(int 1=0; 1 < key.len(); 1++) {
if(key[1] == 0)
else a Jjmp that brand 1 didn't?

// branch 1

HIgh-level Idea

HypotheticalEncrypt(msg, key) {
for(int 1=0; 1 < key.len(); 1++) {

1f(key[1] == 0) .
7/ branch 0 What it branch 0 had, e.qg.,

a jmp that brand 1 didn’t?

else
// branch 1

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

HIgh-level Idea

HypotheticalEncrypt(msg, key) {
for(int 1=0; 1 < key.len(); 1++) {

1f(key[1] == 0) .
/7 branch 0 What it branch O had, e.q.,

a jmp that brand 1 didn’t?

else
// branch 1|Whatif branch O

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

HIgh-level Idea

HypotheticalEncrypt(msg, key) {
for(int 1=0; 1 < key.len(); 1++) {
if(key[i] == @)

// branch o |Whatitbranch O had, e.g.,
else a jmp that brand 1 didn’t?

// branch 1 |What if branch O
1 - took longer? (timing attacks)

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

HIgh-level Idea

HypotheticalEncrypt(msg, key) {
for(int 1=0; 1 < key.len(); 1++) {
if(key[i] == @)

// branch o |Whatitbranch O had, e.g.,
else a jmp that brand 1 didn’t?

// branch 1 |What if branch O
1 - took longer? (timing attacks)
1 - gave off more heat”

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

HIgh-level Idea

HypotheticalEncrypt(msg, key) {
for(int 1=0; 1 < key.len(); 1++) {
if(key[i] == @)

// branch o |Whatitbranch O had, e.g.,
else a jmp that brand 1 didn’t?

// branch 1 |What if branch O
1 - took longer? (timing attacks)
1 - gave off more heat”

- made more noise?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

Differential Power Analysis (DPA)

* SPA just visually inspects a single run

 DPA runs iteratively and reactively
+ (Get multiple samples

- Based on these, construct new plaintext messages
as Inputs, and repeat

Mitigating such attacks

* Hide information by making the execution paths
depend on the inputs as little as possible
- Have to give up some optimizations that depend on

particular bit values in keys

- Some Chinese Remainder Theorem (CRT) optimizations
permitted remote timing attacks on SSL servers

* [he crypto community should seek to design
cryptosystems under the assumption that some
information is going to leak

Other side-channel attacks

Typical threat model: attacker doesn't have root
access to a particular machine

- SO we safely store keys in memory

But what if the attacker had physical access to the
machine’?

Attack

o Attacker’s goal: reboot the machine into an OS that
that he or she controls to look at memory contents

Challenge: memory loses state without power

R "I E 5 It s
L ks TR IR
¥ < SUQ 3= 1 3 “
o P ’ RN - > WA ’ .
. 5
) “.\1'
!
- - .0;‘ 3 as
) ¢
. ’ PR, l 3

e
314

8 @
"--
. HREERRERTEEVRLE
O HEHEEREEIRRERE

5 secC 30 sec 00 sec 5 min

g ;"
. , i

Cold boot attack

Memory loses its state slower

at really cold temperatures
Seconds Error % at Error %
w/o power | operating temp. | at —50°C
A 60 41 (no errors)
300 50 0.000095
B 360 50 (no errors)
600 50 0.000036
C 120 41 0.00105
360 42 0.00144
D 40 50 0.025
80 50 0.18

Table 2: Effect of cooling on error rates

Cold boot attack

Memory loses its state slower

at really cold temperatures
Seconds Error % at Error %
w/o power | operating temp. | at —50°C
A 60 41 (no errors)
300 50 0.000095
B 360 50 (no errors)
600 50 0.000036
C 120 41 0.00105
360 42 0.00144
D 40 50 0.025
80 50 0.18

Table 2: Effect of cooling on error rates

Cold boot attack

Memory loses its state slower

at really cold temperatures
Seconds Error % at Error %
w/o power | operating temp. | at —50°C
A 60 41 (no errors)
300 50 0.000095
B 360 50 (no errors)
600 50 0.000036
C 120 41 0.00105
360 42 0.00144
D 40 50 0.025
80 50 0.18

Table 2: Effect of cooling on error rates

Cold boot attack

 Launching the attack:
Cool down the memory & then power off/take it out
Boot into your own OS

« Scan the memory image for keys (non-trivial but
doable, especially it the keys have a format that's easy

to detect)

« Some defenses against the attack:
Encrypt all of memory (increased CPU support for this)

Use trusted hardware (Xbox does this)

TPM (Trusted Platform Module) stores keys in hardware that is
very difficult to inspect (some self-destruct)

Limit the amount of time keys live in memory
E.g., remove keys from memory when you enter Sleep mode

