
Crypto tidbits:

misuse, side channels

Slides from

• Dave Levin 414-spring2016

A paper from 2013 that looked at how Android  
apps use crypto, as a function of 6 “rules” that reflect  
the bare minimum a secure programmer should know:

A paper from 2013 that looked at how Android  
apps use crypto, as a function of 6 “rules” that reflect  
the bare minimum a secure programmer should know:

1. Do not use ECB mode for encryption. Period.
2. Do not use a non-random IV for CBC encryption.
3. Do not use constant encryption keys.
4. (see paper)
5. (see paper)
6. Do not use static seeds to seed SecureRandom(.)

48%
31%
17%
16%

14%

12%

Crypto misuse in Android apps
15,134 apps from Google play used crypto;

Analyzed 11,748 of them

BouncyCastle defaults
• BouncyCastle is a library that conforms to Java’s
Cipher interface:

• Java documentation specifies:

Cipher c =  
 Cipher.getInstance(“AES/CBC/PKCS5Padding”);
 
// Ultimately end up wrapping a ByteArrayOutputStream  
// in a CipherOutputStream

Crypto misuse in Android apps
15,134 apps from Google play used crypto;

Analyzed 11,748 of them

A failure of the programmers to know the tools they use
A failure of library writers to provide safe defaults

48%
31%
17%
16%

14%

12%

Side-channel attacks
• Cryptography concerns the theoretical difficulty in

breaking a cipher

Cryptographic processing 
(Encrypt/decrypt/sign/etc.)

Secret keys

Input 
message

Output 
message

Side-channel attacks
• Cryptography concerns the theoretical difficulty in

breaking a cipher

Cryptographic processing 
(Encrypt/decrypt/sign/etc.)

Secret keys

Input 
message

Output 
message

• But what about the information that a particular
implementation could leak?
• Attacks based on these are “side-channel attacks”

Side-channel attacks
• Cryptography concerns the theoretical difficulty in

breaking a cipher

Cryptographic processing 
(Encrypt/decrypt/sign/etc.)

Secret keys

Input 
message

Output 
message

Leaked information 
 - Power consumption 
 - Electromagnetic radiation
 - Other (Timing, errors, etc.)

• But what about the information that a particular
implementation could leak?
• Attacks based on these are “side-channel attacks”

Simple Power Analysis (SPA)
• Interpret power traces taken during a

cryptographic operation

• Simple power analysis can reveal the sequence of
instructions executed

SPA on DES

Overall operation clearly visible:  
Can identify the 16 rounds of DES

SPA on DES

Overall operation clearly visible:  
Can identify the 16 rounds of DES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SPA on DES

Specific instructions are also discernible

SPA on DES

Specific instructions are also discernible

Jump taken

No jump taken

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

High-level idea

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

High-level idea

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

High-level idea

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

High-level idea

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

What if branch 0

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

High-level idea

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

What if branch 0
 - took longer? (timing attacks)

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

High-level idea

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

What if branch 0
 - took longer? (timing attacks)
 - gave off more heat?

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

High-level idea

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

What if branch 0
 - took longer? (timing attacks)
 - gave off more heat?
 - made more noise? 
 - …

Differential Power Analysis (DPA)
• SPA just visually inspects a single run

• DPA runs iteratively and reactively
• Get multiple samples
• Based on these, construct new plaintext messages

as inputs, and repeat

Mitigating such attacks
• Hide information by making the execution paths

depend on the inputs as little as possible
• Have to give up some optimizations that depend on

particular bit values in keys
- Some Chinese Remainder Theorem (CRT) optimizations

permitted remote timing attacks on SSL servers

• The crypto community should seek to design
cryptosystems under the assumption that some
information is going to leak

Other side-channel attacks
• Typical threat model: attacker doesn’t have root

access to a particular machine
• So we safely store keys in memory

• But what if the attacker had physical access to the
machine?

Attack
• Attacker’s goal: reboot the machine into an OS that

that he or she controls to look at memory contents

• Challenge: memory loses state without power

5 sec 30 sec 60 sec 5 min

Cold boot attack
Memory loses its state slower  

at really cold temperatures

Cold boot attack
Memory loses its state slower  

at really cold temperatures

Cold boot attack
Memory loses its state slower  

at really cold temperatures

Cold boot attack
• Launching the attack:

• Cool down the memory & then power off/take it out
• Boot into your own OS
• Scan the memory image for keys (non-trivial but

doable, especially if the keys have a format that’s easy
to detect)

• Some defenses against the attack:
• Encrypt all of memory (increased CPU support for this)
• Use trusted hardware (Xbox does this)

- TPM (Trusted Platform Module) stores keys in hardware that is
very difficult to inspect (some self-destruct)

• Limit the amount of time keys live in memory
- E.g., remove keys from memory when you enter Sleep mode

