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A paper from 2013 that looked at how Android  
apps use crypto, as a function of 6 “rules” that reflect  
the bare minimum a secure programmer should know:

1. Do not use ECB mode for encryption. Period.
2. Do not use a non-random IV for CBC encryption.
3. Do not use constant encryption keys.
4. (see paper)
5. (see paper)
6. Do not use static seeds to seed SecureRandom(.)
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Crypto misuse in Android apps
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BouncyCastle defaults
• BouncyCastle is a library that conforms to Java’s 
Cipher interface: 

• Java documentation specifies:

Cipher c =  
   Cipher.getInstance(“AES/CBC/PKCS5Padding”);
 
// Ultimately end up wrapping a ByteArrayOutputStream  
// in a CipherOutputStream





Crypto misuse in Android apps
15,134 apps from Google play used crypto; 

Analyzed 11,748 of them

A failure of the programmers to know the tools they use
A failure of library writers to provide safe defaults
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Side-channel attacks
• Cryptography concerns the theoretical difficulty in 

breaking a cipher
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Leaked information 
  - Power consumption 
  - Electromagnetic radiation
  - Other (Timing, errors, etc.)

• But what about the information that a particular 
implementation could leak? 
• Attacks based on these are “side-channel attacks”



Simple Power Analysis (SPA)
• Interpret power traces taken during a 

cryptographic operation 

• Simple power analysis can reveal the sequence of 
instructions executed
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SPA on DES

Specific instructions are also discernible

Jump taken

No jump taken
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HypotheticalEncrypt(msg, key) {
  for(int i=0; i < key.len(); i++) {  
     if(key[i] == 0)
        // branch 0
     else
        // branch 1
   }
}

High-level idea

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends 
on the inputs (key/data), then SPA can reveal keys

What if branch 0
  - took longer? (timing attacks)
  - gave off more heat?
  - made more noise? 
  - …



Differential Power Analysis (DPA)
• SPA just visually inspects a single run 

• DPA runs iteratively and reactively 
• Get multiple samples 
• Based on these, construct new plaintext messages 

as inputs, and repeat



Mitigating such attacks
• Hide information by making the execution paths 

depend on the inputs as little as possible 
• Have to give up some optimizations that depend on 

particular bit values in keys 
- Some Chinese Remainder Theorem (CRT) optimizations 

permitted remote timing attacks on SSL servers 

• The crypto community should seek to design 
cryptosystems under the assumption that some 
information is going to leak



Other side-channel attacks
• Typical threat model: attacker doesn’t have root 

access to a particular machine 
• So we safely store keys in memory 

• But what if the attacker had physical access to the 
machine?



Attack
• Attacker’s goal: reboot the machine into an OS that 

that he or she controls to look at memory contents 

• Challenge: memory loses state without power

5 sec 30 sec 60 sec 5 min
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Cold boot attack
• Launching the attack: 

• Cool down the memory & then power off/take it out 
• Boot into your own OS 
• Scan the memory image for keys (non-trivial but 

doable, especially if the keys have a format that’s easy 
to detect) 

• Some defenses against the attack: 
• Encrypt all of memory (increased CPU support for this) 
• Use trusted hardware (Xbox does this) 

- TPM (Trusted Platform Module) stores keys in hardware that is 
very difficult to inspect (some self-destruct) 

• Limit the amount of time keys live in memory 
- E.g., remove keys from memory when you enter Sleep mode


