Network layer attacks

Slides from
* Dave Levin 414-spring2016

nND w A~ N

Layer 3: (Inter)network layer

e Bridges multiple “subnets” to
provide end-to-end internet
connectivity between nodes

Provides global addressing (IP
addresses)

Only provides best-effort delivery
of data (i.e., no retransmissions,
etc.)

Physical

e \Works across different link
technologies

20-byte
header

P packet "header”

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum
32-bit

Source IP address

32-bit
Destination IP address

P Packet Header Fields (1)

o \ersion number (4 bits)
- |ndicates the version of the |IP protocol

- Necessary for knowing what fields follow
« “4” (for IPv4) or “6” (for IPv©E)

 Header length (4 bits)
- How many 32-bit words (rows) in the header
- Typically 5
- (Can provide IP options, too

* [ype-of-service (8 bits)
- Allow packets to be treated differently based on different needs
- Low delay for audio, high bandwidth for bulk transfer, etc.

P Packet Header Fields (2)

 [wo IP addresses
« Source (32 bits)
- Destination (32 bits)

* Destination address
- Unique identifier/locator for the receiving host

- Allows each node (end-host and router) to make
forwarding decisions

e Source address
- Unigue identifier/locator for the sending host
- Recipient can decide whether to accept the packet
- Allows destination to reply to the source

|P: “Best effort” packet delivery

* Routers inspect destination address, determine
“‘next hop” in the forwarding table

* Best effort = “I'll give it a try”
- Packets may be lost
- Packets may be corrupted
- Packets may be delivered out of order

Fixing these is the job of the transport layer!

Attacks on |P

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum
32-bit
Source IP address
32-bit
Destination IP address

Attacks on |P

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum

32-bit
Source IP address

32-bit
Destination IP address

Source-spoof

There is nothing Iin |IP that
enforces that your source
|IP address is really “yours”

Attacks on [P

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum

32-bit
Source IP address
32-bit
Destination IP address

Source-spoof

There is nothing Iin |IP that
enforces that your source
|IP address is really “yours”

Eavesdrop / Tamper

IP provides no protection

of the payload or header

Source-spoofing

* \Why source-spoof?
- Consider spam: send many emails from one
computer

- Easy defense: block many emails from a given
(source) IP address

- Easy countermeasure: spoof the source |IP address
- Counter-countermeasure?

 How do you know If a packet you receive has a
spoofed source”

Salient network features

 Recall: The Internet operates via destination-based
routing

o attacker: pkt (spoofed source) -> destination
destination: pkt -> spoofed source

* |n other words, the response goes to the spoofed
source, notthe attacker

Defending against source-spoofing

 How do you know If a packet you receive has a
spoofed source?

- Send a challenge packet to the (possibly spoofed)
source (e.qg., a difficult to guess, random nonce)

- |f the recipient can answer the challenge, then likely
that the source was not spoofed

So do you have to do this with every packet??

- Every packet should have something that's difficult to
guess

- Recall the query ID in the DNS queries! Easy to
predict => Kaminsky attack

Source spoofing

* \Why soL
- Consic

rce-spooft?
er DoS attacks: generate as much traffic as

DOSSID

e to congest the victim’'s network

- Easy defense: block all traftic from a given source

near th

e edge of your network

- Easy countermeasure: spoof the source address

* Challenges won't help here; the damage has been

done by
network

the time the packets reach the core of our

* |deally, detect such spooting near the source

Egress filtering

* [he point (router/switch) at which traffic enters your
network Is the ingress point

* [he point (router/switch) at which traffic leaves your
network Is the egress point

 You don’t know who owns all IP addresses in the
world, but you do know who in your own network
gets what |IP addresses
* |f you see a packet with a source |IP address that

doesn't belong to your network trying to cross your
egress point, then drop it

Egress filtering is not widely deployed

Eavesdropping / Tampering

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum
32-bit
Source IP address
32-bit
Destination IP address

 No security built into IP

» => Deploy secure IP over IP

Virtual Private Networks (VPNSs)

Untrusted network Trusted network

Goal: Allow the client to connect to the trusted network
from within an untrusted network

Example: Connect to your company’s network (for payroll,
file access, etc.) while visiting a competitor’s office

Virtual Private Networks (VPNSs)

Untrusted network Trusted network

ldea: A VPN “client” and “server” together create
end-to-end encryption/authentication

Predominate way of doing this: IPSec

PSec

 Operates in a few different modes

» Transport mode: Simply encrypt the payload but not
the headers

- Tunnel mode: Encrypt the payload and the headers

 But how do you encrypt the headers? How does
routing work"

- Encrypt the entire IP packet and make that the
payload of another IP packet

Tunnel mode

The VPN server decrypts and then sends the
payload (itself a full IP packet) as if it had just
received It from the network

From the client/servers’ perspective:
Looks like the client is physically connected to the network!

