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| ayer 4: lransport layer

Physical

e End-to-end communication
between processes

* Different types of services
provided:

 UDP: unreliable datagrams

e TCP: reliable byte stream

 “Reliable” = keeps track of what

data were received properly
and retransmits as necessary



TCP: reliability

* (Given best-eftort deliver, the goal is to ensure
reliability
- All packets are delivered to applications
... In order
... unmodified (with reasonably high probability)

 Must robustly detect and retransmit lost data



TCP’s bytestream service

e Process A on host 1;
- Send byte O, byte 1, byte 2, byte 3, ...

 Process B on host 2:
- Recelve byte O, byte 1, byte 2, byte 3, ...

* [he applications do not see:
- packet boundaries (looks like a stream of bytes)
* |ost or corrupted packets (they're all correct)
* retransmissions (they all only appear once)




TCP bytestream service

Abstraction: Each byte reliably delivered in order

Process A on host

byte byte 2 | byte 3 byte 5 | byte6 | byte 7 | byte 8

\ \

Process B on host H2




TCP bytestream service

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

byte byte2 | byte3 | byte4 | byte5 | byte6 | byte 7 | byte 8

Packet 1 Packet 2 Packet 3

\

Needs to be
retransmitted

Needs to be
buffered



TCP bytestream service

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

byte byte2 | byte3 | byte4 | byte5 | byte6 | byte 7 | byte 8

Packet 1 Packet 2 Packet 3
Needs to be
retransmitted Needs 1o be
buffered

TCP’s first job: achieve the abstraction while
hiding the reality from the application
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How does TCP achieve reliability”?

Watertall
diagram

me

Expecting byte 1000

Expecting byte 1501

Reliability through acknowledgments

to determine whether something was received.
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How does TCP achieve reliability”?
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Buffer these until

v

Expecting packet 3001




TCP congestion control

TCP’s second job: don’t break the network!

e Try to use as much of the network as is safe (does
not adversely affect others’ performance) and
efficient (makes use of network capacity)

 Dynamically adapt how quickly you send based on
the network path’s capacity

 \When an ACK doesn’t come back, the network may
be beyond capacity: slow down.



TCP header

16-bit 16-bit
Source port Destination port
32-bit
Sequence number
32-bit
Acknowledgment
4-bit : -
Header | Reserved 6-bit _16'b|t _
Length Flags Advertised window
16-bit 16-bit
Checksum Urgent pointer

Options (variable)

Padding

Data




TCP header

IP Header
Source port Destination port
32-bit
Sequence number
32-bit
Acknowledgment
4-bi : -
Heac:ter Reserved 6-bit _16'b|t _
Length Flags Advertised window
16-bit 16-bit
Checksum Urgent pointer
Options (variable) Padding




TCP ports

Ports are associated with OS processes

Sandwiched between IP header and the
application data

{src IP/port, dst IP/port} : this 4-tuple uniquely
identifies a TCP connection

Some port numbers are well-known
. 80 = HTTP
* 53 = DNS



TCP header

IP Header
| Source port Destination port !

32-bit

Sequence number

32-bit
Acknowledgment

4-bit 6-bit 16-bit

Header Reserved

Length Flags Advertised window
16-bit 16-bit
Checksum Urgent pointer
Options (variable) Padding




TCP segno

Each byte in the byte stream has a unigue
‘sequence number”

- Unique for both directions

“Sequence number” in the header = sequence
number of the first byte in the packet's data

Next sequence number = previous segno +
previous packet's data size

"Acknowledgment” in the header = the next segno
you expect from the other end-host



TCP header

IP Header

16-bit 16-bit
Source port Destination port
32-bit
Sequence number
32-bit
powledgment

4-bi -
Heac:ter Reserved _16'b|t _
Length Advertised window
16-bi 16-bit
Checksum Urgent pointer
Options (variable) Padding




TCP flags

SYN
- Used for setting up a connection

ACK
- Acknowledgments, for data and “control” packets

FIN

RST
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Setting up a connection

Three-way handshake
A B

| et’s SYNchronize

seguence numbers
Watertall

diagram Got yours; here’s mine

Got yours, too




TCP flags

SYN
ACK

FIN: Let’'s shut this down (two-way)
* FIN
- FIN+ACK

RST: I'm shutting you down

« Says “delete all your local state, because | don’t know
what you're talking about



Attacks

 SYN flooding
* |njection attacks

* Opt-ack attack
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SYN flooding
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SYN flooding

Recall the three-way handshake:

A B
S*}
Wateriall [ At this point, B
diagram VSSIE allocates state
© ‘W for this new
- connection
% (inC' |P’ pOrt’
X maximum

K .
SYN + AC segment size)

B will hold onto this local state and retransmit SYN+ACK'’s
until it hears back or times out (up to 63 sec).
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SYN flooding

The attack
A B C

IP/port,

MSS, ...

IP/port,

MSS,... .
New connections

will fail (insufficient
memory)

Exhaust memory
at the victim B.




SYN flooding details

Easy to detect many incomplete handshakes from a
single |IP address

Spoofthe source |IP address
- It's just a field in a header: set it to whatever you like

Problem: the host who really owns that spoofed IP
address may respond to the SYN+ACK with a RST,
deleting the local state at the victim

|[deally, spoof an IP address of a host you know won't
respond
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SYN cookies

The defense
A B

SYN Rather than store this data,
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Store the necessary
state In your segno

ACK Check that f(data) is valid
W’ for this connection. Only
at that point do you

allocate state.




SYN cookies

The defense
A B

SYN Rather than store this data,
\ send It to the host who
S Initiati g the
connection and have

him return it to you

Store the necessary

state in your segno
Check that f(data) is valid

AC . .
K f(datayy 1 for this connection. Only
at that point do you
IP/port,

allocate state.




SYN cookie format

32-bit segno

fimestamp

Prevents The info we Includes:
replay need for this |IPs/ports, MSS,
attacks connection timestamp

CK f
W} The secure hash makes

it difficult for the attacker

to guess what () will be,
and therefore the attacker
cannot guess a correct ACK
if he spoofs.




INnjection attacks

e SUPPOSEe you are on the path between src and dst;
what can you do”?

- Trivial to inject packets with the correct sequence
number

* \What if you are not on the path?

- Need to guess the sequence number
* |s this difficult to do”



INnitlal sequence numbers

* |nitlal sequence numbers used to be deterministic

e \What havoc can we wreak”
« Send RSTs

* |nject data packets into an existing connection (TCP
veto attacks)

* |nitiate and use an entire connection without ever
hearing the other end
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X-terminal
server

“echo ++ >>

Mitnick attack

SYN+ACK

seqno

Server that X-

term trusts

./rhosts”

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

2. Spoof trusted server’s [P addr
in SYN to X-terminal

3. Trusted server too busy to RST
4. ACK with the guessed seqgno

5. Grant access to all sources

6. RSTs to trusted server (cleanup)



Defenses

* |nitial sequence number must be difficult to predict!
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A B

But to get you to send faster, | need

1 to get data in order to ACK, so |

need to recelve quickl
QUICEY  ordoI1?
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Amplification

* The big deal with this attack is its Amplification
Factor

- Attacker sends x bytes of data, causing the victim to
send many more bytes of data in response

- Recent examples: NTP, DNSSEC

 Amplified in TCP due to cumulative ACKs

+ "ACK x" says “I've seen all bytes up to but not
including x”



Opt-ack’'s amplification factor

 Max bytes sent by victim per ACK:

« Max ACKs attacker can send per second:
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Opt-ack’'s amplification factor

 Max bytes sent by victim per ACK:

Packets sent per ACK Bytes per packet
Max window size ‘E  SREEEEEEEEEEEEEEEEEEEED
P X ,(14+40+I\/ISS)
. MSS - Srersssasasasaiees gesess
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Opt-ack’'s amplification factor

e Boils down to max window size and MSS

« Default max window size: 65,536
« Default MSS: 536

o Default amp factor: 65536 * (1/536 + 1/54) ~ 1336x
* Window scaling lets you increase this by a factor of 2214
« Window scaling amp factor: ~1336 * 2/ 14 ~ 22M

e Using minimum MSS of 88: ~ 32M



Opt-ack defenses

e |s there a way we could defend against opt-ack in
a way that Is still compatible with existing
implementations of TCP?

 An important goal in networking is incremental
deployment. ideally, we should be able to benefit
from a system/modification when even a subset of
hosts deploy It.



Opt-ack defenses

 Nonces
« Mostly solve problem, but not incremental

« ACK alignment
« Send ~MSS or MSS-1; make hard to keep sync’d
o Breaks if routers split packet

« Random skip
« Sender randomly skips a segment
« Good receiver will ask for lost packet again (
« Attacker won’t be able to distinguish, will ACK
« Costs receiver 1RT of performance



