Transport layer attacks

Slides from
* Dave Levin 414-spring2016

nND w A~ N

| ayer 4: lransport layer

Physical

e End-to-end communication
between processes

* Different types of services
provided:

 UDP: unreliable datagrams

e TCP: reliable byte stream

 “Reliable” = keeps track of what

data were received properly
and retransmits as necessary

TCP: reliability

* (Given best-eftort deliver, the goal is to ensure
reliability
- All packets are delivered to applications
... In order
... unmodified (with reasonably high probability)

 Must robustly detect and retransmit lost data

TCP’s bytestream service

e Process A on host 1;
- Send byte O, byte 1, byte 2, byte 3, ...

 Process B on host 2:
- Recelve byte O, byte 1, byte 2, byte 3, ...

* [he applications do not see:
- packet boundaries (looks like a stream of bytes)
* |ost or corrupted packets (they're all correct)
* retransmissions (they all only appear once)

TCP bytestream service

Abstraction: Each byte reliably delivered in order

Process A on host

byte byte 2 | byte 3 byte 5 | byte6 | byte 7 | byte 8

\ \

Process B on host H2

TCP bytestream service

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

byte byte2 | byte3 | byte4 | byte5 | byte6 | byte 7 | byte 8

Packet 1 Packet 2 Packet 3

\

Needs to be
retransmitted

Needs to be
buffered

TCP bytestream service

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

byte byte2 | byte3 | byte4 | byte5 | byte6 | byte 7 | byte 8

Packet 1 Packet 2 Packet 3
Needs to be
retransmitted Needs 1o be
buffered

TCP’s first job: achieve the abstraction while
hiding the reality from the application

How does TCP achieve reliability”?

A B

Watertall
diagram

|

ime

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

|

me

How does TCP achieve reliability”?

Watertall
diagram

|

ime

A

Bytes 1

000-15¢,

B

Expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

|

ime

A

Bytes 1

000-15¢,

B

Expecting byte 1000

Expecting byte 1501

How does TCP achieve reliability”?

A B
Bytes 100¢. 500 Expecting byte 1000
Watertall \01> Expecting byte 1501
diagram ACK 120 eee

ime

|

How does TCP achieve reliability”?

Watertall
diagram

me

Expecting byte 1000

Expecting byte 1501

Reliability through acknowledgments

to determine whether something was received.

How does TCP achieve reliability”?

A B

Watertall
diagram

|

ime

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

|

me

How does TCP achieve reliability”?

Watertall
diagram

|

ime

A

Bytes 1

000-15¢,

Expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

|

ime

Expecting byte 1000

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

|

ime

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

ime

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

ime

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

ime

Still expecting byte 1000
Still expecting byte 1000

Buffer these until

v

Expecting packet 3001

TCP congestion control

TCP’s second job: don’t break the network!

e Try to use as much of the network as is safe (does
not adversely affect others’ performance) and
efficient (makes use of network capacity)

 Dynamically adapt how quickly you send based on
the network path’s capacity

 \When an ACK doesn’t come back, the network may
be beyond capacity: slow down.

TCP header

16-bit 16-bit
Source port Destination port
32-bit
Sequence number
32-bit
Acknowledgment
4-bit : -
Header | Reserved 6-bit _16'b|t _
Length Flags Advertised window
16-bit 16-bit
Checksum Urgent pointer

Options (variable)

Padding

Data

TCP header

IP Header
Source port Destination port
32-bit
Sequence number
32-bit
Acknowledgment
4-bi : -
Heac:ter Reserved 6-bit _16'b|t _
Length Flags Advertised window
16-bit 16-bit
Checksum Urgent pointer
Options (variable) Padding

TCP ports

Ports are associated with OS processes

Sandwiched between IP header and the
application data

{src IP/port, dst IP/port} : this 4-tuple uniquely
identifies a TCP connection

Some port numbers are well-known
. 80 = HTTP
* 53 = DNS

TCP header

IP Header
| Source port Destination port !

32-bit

Sequence number

32-bit
Acknowledgment

4-bit 6-bit 16-bit

Header Reserved

Length Flags Advertised window
16-bit 16-bit
Checksum Urgent pointer
Options (variable) Padding

TCP segno

Each byte in the byte stream has a unigue
‘sequence number”

- Unique for both directions

“Sequence number” in the header = sequence
number of the first byte in the packet's data

Next sequence number = previous segno +
previous packet's data size

"Acknowledgment” in the header = the next segno
you expect from the other end-host

TCP header

IP Header

16-bit 16-bit
Source port Destination port
32-bit
Sequence number
32-bit
powledgment

4-bi -
Heac:ter Reserved _16'b|t _
Length Advertised window
16-bi 16-bit
Checksum Urgent pointer
Options (variable) Padding

TCP flags

SYN
- Used for setting up a connection

ACK
- Acknowledgments, for data and “control” packets

FIN

RST

Setting up a connection

Three-way handshake
A B

Watertall
diagram

l

Setting up a connection

Three-way handshake
A B

S*}
Watertall

diagram

l

Setting up a connection

Three-way handshake

Watertall
diagram

|

ime

A

S&»

B

Let's SYNchronize
seguence numbers

Setting up a connection

Three-way handshake

Watertall
diagram

|

ime

A

S&»
SYN + ACK

B

Let's SYNchronize
seguence numbers

Setting up a connection

Three-way handshake

Watertall
diagram

|

ime

A

S*}
SYN + ACK

B

Let's SYNchronize
seguence numbers

Got yours; here’s mine

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize
\ sequence numbers
Waterfall N+ ACK - | o
diagram / ot yours; here’s mine
O ACK
.gl \

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize
\ seqguence numbers
Watertall \ + ACK | o
diagram SY Got yours; here’s mine
O ACK

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize
\ seqguence numbers
Watertall \ + ACK | o
diagram SY Got yours; here’s mine
O ACK

Dax}

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize
\ seqguence numbers
Watertall \ + ACK | o
diagram SY Got yours; here’s mine
O ACK
Datg
%

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize

\ seqguence numbers

Watertall \ + ACK | o
diagram SY Got yours; here’s mine

O ACK
Datg

%
%

Setting up a connection

Three-way handshake
A B

| et’s SYNchronize

seguence numbers
Watertall

diagram Got yours; here’s mine

Got yours, too

TCP flags

SYN
ACK

FIN: Let’'s shut this down (two-way)
* FIN
- FIN+ACK

RST: I'm shutting you down

« Says “delete all your local state, because | don’t know
what you're talking about

Attacks

 SYN flooding
* |njection attacks

* Opt-ack attack

SYN flooding

SYN flooding

Recall the three-way handshake:
A B

Watertall
diagram

|

ime

Watertall
diagram

|

ime

SYN flooding

Recall the three-way handshake:
A B

S*}

SYN flooding

Recall the three-way handshake:
A B

S*}
Watertall

At this point, B

diagram allocates state
- for this new
= connection
(incl. IP, port,
maximum

segment size)

SYN flooding

Recall the three-way handshake:

A B
S*}
Wateriall P At this point, B
diagram VSSIE allocates state
o for this new
& connection
(incl. IP, port,
maximum

segment size)

SYN flooding

Recall the three-way handshake:

A B
S*}
\C/j\(aterfall P At this point, B
lagram USES allocates state
Q ‘W for this new
& connection
(incl. IP, port,
maximum
segment size)

SYN flooding

Recall the three-way handshake:

A B
S*}
Wateriall P At this point, B
diagram VSSIE allocates state

gyN + ACK for this new
connection
% (incl. IP, port,
%

maximum
segment size)

ime

SYN flooding

Recall the three-way handshake:

A B
S*}
\C/j\(aterfall P At this point, B
lagram " YIS o [|ocates state
D y for this new
- connection
% (incl. IP, port,
X maximum

cK .
sYN+A segment size)

SYN flooding

Recall the three-way handshake:

A B
S*}
Wateriall [At this point, B
diagram VSSIE allocates state
© ‘W for this new
- connection
% (inC' |P’ pOrt’
X maximum

K .
SYN + AC segment size)

B will hold onto this local state and retransmit SYN+ACK'’s
until it hears back or times out (up to 63 sec).

SYN flooding

The attack
B

SYN flooding

The attack
A B

S*}

SYN flooding

The attack
A B

S&»

IP/port,
MSS

SYN flooding

The attack
A B

S*}
IP/port,
S&» MSS,...

SYN flooding

The attack
A B

S*}
S*}

IP/port,
MSS

IP/port,
MSS,.:

SYN flooding

The attack
A B

S*}
IP/port,
S*} MSS,...
IP/port,
S*’ MSS, ...

SYN flooding

The attack
A B

S*}
S*}
S*’

IP/port,
MSS

IP/port,
MSS,.:
IP/port,
MSS, ...

SYN flooding

The attack
A B

IP/port,
MSS
IP/port,
MSS, ...
|P/port,
MSS:

SYN flooding

The attack
A B

IP/port,
MSS
IP/port,
MSS, ...

SYN flooding

The attack
A B

IP/port,
MSS
IP/port,
MSS, ...

Exhaust memory
at the victim B.

SYN flooding

The attack
A B C

IP/port,
MSS

Exhaust memory
at the victim B.

SYN flooding

The attack
A B C

IP/port,

MSS, ...

IP/port,

MSS,... .
New connections

will fail (insufficient
memory)

Exhaust memory
at the victim B.

SYN flooding details

Easy to detect many incomplete handshakes from a
single |IP address

Spoofthe source |IP address
- It's just a field in a header: set it to whatever you like

Problem: the host who really owns that spoofed IP
address may respond to the SYN+ACK with a RST,
deleting the local state at the victim

|[deally, spoof an IP address of a host you know won't
respond

SYN cookies

The defense
B

SYN cookies

The defense
A B

S*}

SYN cookies

The defense
A B

S*}

IP/port,
MSS

SYN cookies

The defense
A B

S*}

Rather than store this data,
send It to the host who

'S Initiating the

connection and have

him return it to you

IP/port,
MSS

SYN cookies

The defense
A B

Rather than store this data,
send It to the host who

IS Initiating the
B connection and have

him return it to you

Store the necessary
state in your segno

SYN cookies

The defense
A B

SYN Rather than store this data,
\ send it to the host who
S Initiati g the
connection and have
him return it to you

Store the necessary
state in your segno

SYN cookies

The defense
A B

SYN Rather than store this data,
\ send it to the host who
S Initiati g the
connection and have
him return it to you

Store the necessary
state in your segno

%’

SYN cookies

The defense
A B

SYN Rather than store this data,
\ send It to the host who
S Initiati g the
connection and have

him return it to you

Store the necessary
state In your segno

ACK Check that f(data) is valid
W’ for this connection. Only
at that point do you

allocate state.

SYN cookies

The defense
A B

SYN Rather than store this data,
\ send It to the host who
S Initiati g the
connection and have

him return it to you

Store the necessary

state in your segno
Check that f(data) is valid

AC . .
K f(datayy 1 for this connection. Only
at that point do you
IP/port,

allocate state.

SYN cookie format

32-bit segno

fimestamp

Prevents The info we Includes:
replay need for this |IPs/ports, MSS,
attacks connection timestamp

CK f
W} The secure hash makes

it difficult for the attacker

to guess what () will be,
and therefore the attacker
cannot guess a correct ACK
if he spoofs.

INnjection attacks

e SUPPOSEe you are on the path between src and dst;
what can you do”?

- Trivial to inject packets with the correct sequence
number

* \What if you are not on the path?

- Need to guess the sequence number
* |s this difficult to do”

INnitlal sequence numbers

* |nitlal sequence numbers used to be deterministic

e \What havoc can we wreak”
« Send RSTs

* |nject data packets into an existing connection (TCP
veto attacks)

* |nitiate and use an entire connection without ever
hearing the other end

Mitnick attack

X-terminal Server that X-

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

Attacker

Mitnick attack

X-terminal Server that X-

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker

Mitnick attack

X-terminal Server that X-

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker

Mitnick attack

X-terminal Server that X-

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

Mitnick attack

X-terminal Server that X-

server

term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

3. Trusted server too busy to RST

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

3. Trusted server too busy to RST
4. ACK with the guessed seqgno

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

3. Trusted server too busy to RST
4. ACK with the guessed seqgno

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

“echo ++ >> ./rhosts” 3. Trusted server too busy to RST
4. ACK with the guessed seqgno

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

“echo ++ >> ./rhosts” 3. Trusted server too busy to RST
4. ACK with the guessed seqgno

5. Grant access to all sources

Mitnick attack

SYN+ACK

X-terminal seqgno
server

Server that X-

term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

“echo ++ >> ./rhosts” 3. Trusted server too busy to RST
4. ACK with the guessed seqgno

5. Grant access to all sources

Mitnick attack

SYN+ACK

X-terminal seqgno
server

Server that X-

term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

“echo ++ >> ./rhosts” 3. Trusted server too busy to RST
4. ACK with the guessed seqgno

5. Grant access to all sources
6. RSTs to trusted server (cleanup)

X-terminal
server

“echo ++ >>

Mitnick attack

SYN+ACK

seqno

Server that X-

term trusts

./rhosts”

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

2. Spoof trusted server’s [P addr
in SYN to X-terminal

3. Trusted server too busy to RST
4. ACK with the guessed seqgno

5. Grant access to all sources

6. RSTs to trusted server (cleanup)

Defenses

* |nitial sequence number must be difficult to predict!

Opt-ack attack

B

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

B

Expecting byte 1000

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B

Bytes 1000-150, Expecting byte 1000

\>

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B

Bytes 1000-150, Expecting byte 1000

\>

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B

Expecting byte 1000

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B
Bytes 1000-150, Expecting byte 1000

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B
Bytes 1000-150, Expecting byte 1000

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

B
A
m’
ACK.12
4 -------
B tes 2002_2 502

Opt-ack attack

B
Sytes 2002-250, f | could convince you to send

REALLY quickly, then you would
eftectively DoS your own network!

Opt-ack attack

A B

But to get you to send faster, | need

1 to get data in order to ACK, so |

need to receive quickly

It | could convince you to send
REALLY quickly, then you would
eftectively DoS your own network!

Opt-ack attack

A B

But to get you to send faster, | need

1 to get data in order to ACK, so |

need to recelve quickl
QUICEY ordoI1?

It | could convince you to send
REALLY quickly, then you would
eftectively DoS your own network!

Opt-ack attack

B

Opt-ack attack

B
A
Bytes 1

000-15¢,

Opt-ack attack

A B

Bytes 100¢.

900
\b It | can predict what the last segno will be

and when A will send it

Opt-ack attack

ceue ~1500
I—l\b If | can predict what the last segno will be

and when A will send it

Opt-ack attack

ACK_.‘.E’-QL Then | could ACK early! (“optimistically”)

T -1500
I—l\b If | can predict what the last segno will be

and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to
get dropped.

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to

\ get dropped.
X

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to
get dropped.

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to
get dropped.

But so long as | keep ACKIng correctly, it
doesn’'t matter.

Opt-ack attack

Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to
get dropped.

But so long as | keep ACKIng correctly, it
doesn’'t matter.

Amplification

* The big deal with this attack is its Amplification
Factor

- Attacker sends x bytes of data, causing the victim to
send many more bytes of data in response

- Recent examples: NTP, DNSSEC

 Amplified in TCP due to cumulative ACKs

+ "ACK x" says “I've seen all bytes up to but not
including x”

Opt-ack’'s amplification factor

 Max bytes sent by victim per ACK:

« Max ACKs attacker can send per second:

Opt-ack’'s amplification factor

 Max bytes sent by victim per ACK:

Packets sent per ACK Bytes per packet
Max window size ‘E SREEEEEEEEEEEEEEEEEEEED
P X ,(14+40+I\/ISS)
° MSS : '--< -------------- é....
-------------------------- (\@ \\Q \0(0

« Max ACKs attacker can send per second:

Opt-ack’'s amplification factor

 Max bytes sent by victim per ACK:

Packets sent per ACK Bytes per packet
Max window size ‘E SREEEEEEEEEEEEEEEEEEEED
P X ,(14+40+I\/ISS)
. MSS - Srersssasasasaiees gesess
-------------------------- (\@ \\Q \0(0

ll

Opt-ack’'s amplification factor

e Boils down to max window size and MSS

« Default max window size: 65,536
« Default MSS: 536

o Default amp factor: 65536 * (1/536 + 1/54) ~ 1336x
* Window scaling lets you increase this by a factor of 2214
« Window scaling amp factor: ~1336 * 2/ 14 ~ 22M

e Using minimum MSS of 88: ~ 32M

Opt-ack defenses

e |s there a way we could defend against opt-ack in
a way that Is still compatible with existing
implementations of TCP?

 An important goal in networking is incremental
deployment. ideally, we should be able to benefit
from a system/modification when even a subset of
hosts deploy It.

Opt-ack defenses

 Nonces
« Mostly solve problem, but not incremental

« ACK alignment
« Send ~MSS or MSS-1; make hard to keep sync’d
o Breaks if routers split packet

« Random skip
« Sender randomly skips a segment
« Good receiver will ask for lost packet again (
« Attacker won’t be able to distinguish, will ACK
« Costs receiver 1RT of performance

