
Transport layer attacks

Slides from

• Dave Levin 414-spring2016

Layer 4: Transport layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• End-to-end communication
between processes

• Different types of services
provided:

• UDP: unreliable datagrams

• TCP: reliable byte stream

• “Reliable” = keeps track of what
data were received properly
and retransmits as necessary

TCP: reliability
• Given best-effort deliver, the goal is to ensure

reliability
• All packets are delivered to applications
• … in order
• … unmodified (with reasonably high probability)

• Must robustly detect and retransmit lost data

TCP’s bytestream service
• Process A on host 1:

• Send byte 0, byte 1, byte 2, byte 3, …

• Process B on host 2:
• Receive byte 0, byte 1, byte 2, byte 3, …

• The applications do not see:
• packet boundaries (looks like a stream of bytes)
• lost or corrupted packets (they’re all correct)
• retransmissions (they all only appear once)

TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Process A on host H1

Process B on host H2

Abstraction: Each byte reliably delivered in order

TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

Packet 1 Packet 2 Packet 3

Needs to be  
retransmitted Needs to be 

buffered

TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

Packet 1 Packet 2 Packet 3

Needs to be  
retransmitted Needs to be 

buffered
TCP’s first job: achieve the abstraction while  

hiding the reality from the application

How does TCP achieve reliability?
A B

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

Ti
m

e

Waterfall 
diagram ACK 1501

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

Ti
m

e

Waterfall 
diagram ACK 1501

Reliability through acknowledgments  
to determine whether something was received.

How does TCP achieve reliability?
A B

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000

Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Still expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Still expecting byte 1000

Ti
m

e

Waterfall 
diagram

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000Ti

m
e

Waterfall 
diagram

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000Ti

m
e

Waterfall 
diagram

ACK 1000

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000Ti

m
e

Waterfall 
diagram

ACK 1000

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

Ti
m

e

Waterfall 
diagram

ACK 1000

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

Ti
m

e

Waterfall 
diagram

ACK 1000

ACK 1000

ACK 3001

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

Ti
m

e

Waterfall 
diagram

ACK 1000

ACK 1000

ACK 3001

Buffer these until

TCP congestion control

• Try to use as much of the network as is safe (does
not adversely affect others’ performance) and
efficient (makes use of network capacity)

• Dynamically adapt how quickly you send based on
the network path’s capacity

• When an ACK doesn’t come back, the network may
be beyond capacity: slow down.

TCP’s second job: don’t break the network!

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

IP Header

TCP ports
• Ports are associated with OS processes

• Sandwiched between IP header and the
application data

• {src IP/port, dst IP/port} : this 4-tuple uniquely
identifies a TCP connection

• Some port numbers are well-known
• 80 = HTTP
• 53 = DNS

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

IP Header

TCP seqno
• Each byte in the byte stream has a unique

“sequence number”
• Unique for both directions

• “Sequence number” in the header = sequence
number of the first byte in the packet’s data

• Next sequence number = previous seqno +
previous packet’s data size

• “Acknowledgment” in the header = the next seqno
you expect from the other end-host

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

IP Header

TCP flags
• SYN

• Used for setting up a connection

• ACK
• Acknowledgments, for data and “control” packets

• FIN

• RST

Setting up a connection
A B

Ti
m

e

Waterfall 
diagram

Three-way handshake

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram

Three-way handshake

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram

Three-way handshake

Let’s SYNchronize 
sequence numbers

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

Three-way handshake

Let’s SYNchronize 
sequence numbers

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Data
Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Data
Data
Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

Setting up a connection
A B

SYN seqno=x

Ti
m

e

Waterfall 
diagram SYN seqno=y  

+ACK x+1

ACK y+1

Data
Data
Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

TCP flags
• SYN

• ACK

• FIN: Let’s shut this down (two-way)
• FIN
• FIN+ACK

• RST: I’m shutting you down
• Says “delete all your local state, because I don’t know

what you’re talking about

Attacks
• SYN flooding

• Injection attacks

• Opt-ack attack

SYN flooding

SYN flooding
A B

Ti
m

e

Waterfall 
diagram

Recall the three-way handshake:

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

Recall the three-way handshake:

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

ACK

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

ACK

SYN + ACK

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

ACK

B will hold onto this local state and retransmit SYN+ACK’s  
until it hears back or times out (up to 63 sec).

SYN + ACK

SYN flooding
A B

The attack
C

SYN flooding
A B

SYN

The attack
C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…

Exhaust memory  
at the victim B.

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…

Exhaust memory  
at the victim B.

C

SYN

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…

Exhaust memory  
at the victim B.

C

SYN

New connections 
will fail (insufficient 
memory)

SYN flooding details
• Easy to detect many incomplete handshakes from a

single IP address

• Spoof the source IP address
• It’s just a field in a header: set it to whatever you like

• Problem: the host who really owns that spoofed IP
address may respond to the SYN+ACK with a RST,
deleting the local state at the victim

• Ideally, spoof an IP address of a host you know won’t
respond

SYN cookies
A B

The defense

SYN cookies
A B

SYN

The defense

SYN cookies
A B

SYN

The defense

IP/port,
MSS,…

SYN cookies
A B

SYN

The defense

IP/port,
MSS,…

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to you

SYN cookies
A B

SYN

The defense

IP/port,
MSS,…

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

SYN cookies
A B

SYN

The defense

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

SYN cookies
A B

SYN

The defense

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

ACK f(data)+1

SYN cookies
A B

SYN

The defense

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

ACK f(data)+1
Check that f(data) is valid
for this connection. Only
at that point do you
allocate state.

SYN cookies
A B

SYN

The defense

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

ACK f(data)+1
Check that f(data) is valid
for this connection. Only
at that point do you
allocate state.IP/port,

MSS,…

SYN cookie format
A B

SYN

SYN + ACK  

seqno = f(data)

ACK f(data)+1

IP/port,
MSS,…

The secure hash makes  
it difficult for the attacker  
to guess what f() will be,
and therefore the attacker  
cannot guess a correct ACK 
if he spoofs.

f(.) =
Slow-moving
timestamp MSS Secure hash

Prevents 
replay 
attacks

The info we 
need for this 
connection

Includes: 
IPs/ports, MSS, 

timestamp

32-bit seqno

Injection attacks
• Suppose you are on the path between src and dst;

what can you do?
• Trivial to inject packets with the correct sequence

number

• What if you are not on the path?
• Need to guess the sequence number
• Is this difficult to do?

Initial sequence numbers
• Initial sequence numbers used to be deterministic

• What havoc can we wreak?
• Send RSTs
• Inject data packets into an existing connection (TCP

veto attacks)
• Initiate and use an entire connection without ever

hearing the other end

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST
4. ACK with the guessed seqno

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

ACK

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

ACK

6. RSTs to trusted server (cleanup)

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

ACK

6. RSTs to trusted server (cleanup)

Defenses
• Initial sequence number must be difficult to predict!

Opt-ack attack
A B

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Expecting byte 1000

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501
ACK 1501

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501
ACK 1501

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Bytes 1501-2001

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501
ACK 1501

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Bytes 1501-2001Bytes 2002-2502

Opt-ack attack
A B

Bytes 1000-1500

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Opt-ack attack
A B

Bytes 1000-1500

ACK 1501

Bytes 1501-2001Bytes 2002-2502 If I could convince you to send  
REALLY quickly, then you would  
effectively DoS your own network!

Opt-ack attack
A B

Bytes 1000-1500

ACK 1501

Bytes 1501-2001Bytes 2002-2502 If I could convince you to send  
REALLY quickly, then you would  
effectively DoS your own network!

But to get you to send faster, I need  
to get data in order to ACK, so I  
need to receive quickly

Opt-ack attack
A B

Bytes 1000-1500

ACK 1501

Bytes 1501-2001Bytes 2002-2502 If I could convince you to send  
REALLY quickly, then you would  
effectively DoS your own network!

But to get you to send faster, I need  
to get data in order to ACK, so I  
need to receive quickly …or do I?

Opt-ack attack
A B

Opt-ack attack
A B

Bytes 1000-1500

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501 Then I could ACK early! (“optimistically”)

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501 Then I could ACK early! (“optimistically”)
ACK 2001

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501 Then I could ACK early! (“optimistically”)
ACK 2001
ACK 2502

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001

Then I could ACK early! (“optimistically”)
ACK 2001
ACK 2502

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)
ACK 2001
ACK 2502

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

Eventually, A’s outgoing packets will start to  
get dropped.

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

Eventually, A’s outgoing packets will start to  
get dropped.

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

ACK Eventually, A’s outgoing packets will start to  
get dropped.

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

ACK Eventually, A’s outgoing packets will start to  
get dropped.

But so long as I keep ACKing correctly, it  
doesn’t matter.

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

ACK Eventually, A’s outgoing packets will start to  
get dropped.

But so long as I keep ACKing correctly, it  
doesn’t matter.

Amplification
• The big deal with this attack is its Amplification

Factor
• Attacker sends x bytes of data, causing the victim to

send many more bytes of data in response
• Recent examples: NTP, DNSSEC

• Amplified in TCP due to cumulative ACKs
• “ACK x” says “I’ve seen all bytes up to but not

including x”

Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

• Max ACKs attacker can send per second:

Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

Max window size
MSS

x (14 + 40 + MSS)

Packets sent per ACK Bytes per packet

Ethe
rne

t

TC
P/IP

Pay
loa

d

• Max ACKs attacker can send per second:

Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

Max window size
MSS

x (14 + 40 + MSS)

Packets sent per ACK Bytes per packet

Ethe
rne

t

TC
P/IP

Pay
loa

d

• Max ACKs attacker can send per second:

Attacker bandwidth (bytes/sec)
(14 + 40)

Size of ACK packet

Opt-ack’s amplification factor
• Boils down to max window size and MSS

• Default max window size: 65,536
• Default MSS: 536

• Default amp factor: 65536 * (1/536 + 1/54) ~ 1336x

• Window scaling lets you increase this by a factor of 2^14

• Window scaling amp factor: ~1336 * 2^14 ~ 22M

• Using minimum MSS of 88: ~ 32M

Opt-ack defenses
• Is there a way we could defend against opt-ack in

a way that is still compatible with existing
implementations of TCP?

• An important goal in networking is incremental
deployment: ideally, we should be able to benefit
from a system/modification when even a subset of
hosts deploy it.

Opt-ack defenses
• Nonces

• Mostly solve problem, but not incremental

• ACK alignment

• Send ~MSS or MSS-1; make hard to keep sync’d

• Breaks if routers split packet

• Random skip

• Sender randomly skips a segment

• Good receiver will ask for lost packet again (Sanity check)

• Attacker won’t be able to distinguish, will ACK

• Costs receiver 1RT of performance

