
Transport layer attacks

Slides from

• Dave Levin 414-spring2016



Layer 4: Transport layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• End-to-end communication 
between processes 

• Different types of services 
provided: 

• UDP: unreliable datagrams 

• TCP: reliable byte stream 

• “Reliable” = keeps track of what 
data were received properly 
and retransmits as necessary



TCP: reliability
• Given best-effort deliver, the goal is to ensure 

reliability 
• All packets are delivered to applications 
• … in order 
• … unmodified (with reasonably high probability) 

• Must robustly detect and retransmit lost data



TCP’s bytestream service
• Process A on host 1: 

• Send byte 0, byte 1, byte 2, byte 3, … 

• Process B on host 2: 
• Receive byte 0, byte 1, byte 2, byte 3, … 

• The applications do not see: 
• packet boundaries (looks like a stream of bytes) 
• lost or corrupted packets (they’re all correct) 
• retransmissions (they all only appear once)



TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Process A on host H1

Process B on host H2

Abstraction: Each byte reliably delivered in order
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Reality: Packets sometimes retransmitted, 
sometimes arrive out of order

Packet 1 Packet 2 Packet 3

Needs to be  
retransmitted Needs to be 

buffered



TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Reality: Packets sometimes retransmitted, 
sometimes arrive out of order

Packet 1 Packet 2 Packet 3

Needs to be  
retransmitted Needs to be 

buffered
TCP’s first job: achieve the abstraction while  

hiding the reality from the application
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Reliability through acknowledgments  
to determine whether something was received.
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TCP congestion control

• Try to use as much of the network as is safe (does 
not adversely affect others’ performance) and 
efficient (makes use of network capacity) 

• Dynamically adapt how quickly you send based on 
the network path’s capacity 

• When an ACK doesn’t come back, the network may 
be beyond capacity: slow down.

TCP’s second job: don’t break the network!
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Acknowledgment
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Length
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Flags
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16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data
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TCP ports
• Ports are associated with OS processes 

• Sandwiched between IP header and the 
application data 

• {src IP/port, dst IP/port} : this 4-tuple uniquely 
identifies a TCP connection 

• Some port numbers are well-known 
• 80 = HTTP 
• 53 = DNS
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TCP seqno
• Each byte in the byte stream has a unique 

“sequence number” 
• Unique for both directions 

• “Sequence number” in the header = sequence 
number of the first byte in the packet’s data 

• Next sequence number = previous seqno + 
previous packet’s data size 

• “Acknowledgment” in the header = the next seqno 
you expect from the other end-host
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Header 
Length
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TCP flags
• SYN 

• Used for setting up a connection 

• ACK 
• Acknowledgments, for data and “control” packets 

• FIN 

• RST
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Setting up a connection
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TCP flags
• SYN 

• ACK 

• FIN: Let’s shut this down (two-way) 
• FIN 
• FIN+ACK 

• RST: I’m shutting you down 
• Says “delete all your local state, because I don’t know 

what you’re talking about



Attacks
• SYN flooding 

• Injection attacks 

• Opt-ack attack



SYN flooding
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SYN + ACK

Recall the three-way handshake:

At this point, B 
allocates state  
for this new 
connection 
(incl. IP, port, 
maximum  
segment size)

IP/port, 
MSS,…

ACK

B will hold onto this local state and retransmit SYN+ACK’s  
until it hears back or times out (up to 63 sec).

SYN + ACK
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SYN flooding details
• Easy to detect many incomplete handshakes from a 

single IP address 

• Spoof the source IP address 
• It’s just a field in a header: set it to whatever you like 

• Problem: the host who really owns that spoofed IP 
address may respond to the SYN+ACK with a RST, 
deleting the local state at the victim 

• Ideally, spoof an IP address of a host you know won’t 
respond
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The defense

Rather than store this data, 
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SYN cookie format 
A B

SYN

SYN + ACK  

seqno = f(data)

ACK f(data)+1

IP/port, 
MSS,…

The secure hash makes  
it difficult for the attacker  
to guess what f() will be, 
and therefore the attacker  
cannot guess a correct ACK 
if he spoofs.

f(.) = 
Slow-moving 
timestamp MSS Secure hash

Prevents 
replay 
attacks

The info we 
need for this 
connection

Includes: 
IPs/ports, MSS, 

timestamp

32-bit seqno



Injection attacks
• Suppose you are on the path between src and dst; 

what can you do? 
• Trivial to inject packets with the correct sequence 

number 

• What if you are not on the path? 
• Need to guess the sequence number 
• Is this difficult to do?



Initial sequence numbers
• Initial sequence numbers used to be deterministic 

• What havoc can we wreak? 
• Send RSTs 
• Inject data packets into an existing connection (TCP 

veto attacks) 
• Initiate and use an entire connection without ever 

hearing the other end
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Defenses
• Initial sequence number must be difficult to predict!
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Amplification
• The big deal with this attack is its Amplification 

Factor 
• Attacker sends x bytes of data, causing the victim to 

send many more bytes of data in response 
• Recent examples: NTP, DNSSEC 

• Amplified in TCP due to cumulative ACKs 
• “ACK x” says “I’ve seen all bytes up to but not 

including x”



Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

• Max ACKs attacker can send per second:
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• Max ACKs attacker can send per second:

Attacker bandwidth (bytes/sec)
(14 + 40)

Size of ACK packet



Opt-ack’s amplification factor
• Boils down to max window size and MSS 

• Default max window size: 65,536 
• Default MSS: 536 

• Default amp factor: 65536 * (1/536 + 1/54) ~ 1336x 

• Window scaling lets you increase this by a factor of 2^14 

• Window scaling amp factor: ~1336 * 2^14 ~ 22M 

• Using minimum MSS of 88: ~ 32M



Opt-ack defenses
• Is there a way we could defend against opt-ack in 

a way that is still compatible with existing 
implementations of TCP? 

• An important goal in networking is incremental 
deployment: ideally, we should be able to benefit 
from a system/modification when even a subset of 
hosts deploy it.



Opt-ack defenses
• Nonces

• Mostly solve problem, but not incremental 

• ACK alignment

• Send ~MSS or MSS-1; make hard to keep sync’d

• Breaks if routers split packet

• Random skip

• Sender randomly skips a segment

• Good receiver will ask for lost packet again (Sanity check)

• Attacker won’t be able to distinguish, will ACK

• Costs receiver 1RT of performance


