
414-S17 (Shankar) Exam 1 PRACTICE PROBLEMS Page 1/4

Closed book. Closed notes. No electronic device.

1.

ASLR
Buffer overflow
Canary
chroot()
CodeRed
CSRF
Clickjacking
Cookie
Cookie elevation
Document virus
Effective uid
Flash cookie
Kerckhoff’s principle
Least privilege
Metamorphic
Mitigation
Polymorphic
Ransomware
Real uid
Rootkit
Same origin policy
seccomp
Session elevation
Setuid bit
Session cookie
seteuid()
setuid()
URL’s scope
Virus
Web storage
Worm
X-Frame-Options
XSS
Stored XSS
Reflected XSS

For each description below, give one term that best describes it. In many cases, but not
all, the term will be in the table at left. In each case, give only one answer of at most 4
words (otherwise you get zero).

1. This determines whether the effective uid of a process changes when it starts exe-
cuting a file.

2. This can change the real uid of a process.

3. This infects a running program.

4. This infects a stored program.

5. This detects stack smashing.

6. This kind of virus alters its code at each generation.

7. This kind of virus alters its memory image at each generation but its code does not
change.

8. Virus contained in a macro of a Word file.

9. Virus contained in the autoplay file of a USB stick.

10. Information that a website gets concerning a client’s platform.

11. State that is created at browsers by http headers.

12. Website-specific state at browsers that can be sent to websites only via scripts.

13. State that can be created by a browser and shared across other browsers running
on the same OS.

14. This determines which cookies to include in a http request.

15. A website increases the privileges of an existing cookie.

16. A Linux system call that prevents the executing process from opening any more
files.

17. This is a way to have framebusting without resorting to javascript.

18. A browser has pages a.com and b.com open. Page a.com sends a request with an
attack script to b.com; the latter sends a response containing that script; the browser
executes the script.

19. This is a way to limit the filesystem available to a process to a subtree of the
original filesystem.

414-S17 (Shankar) Exam 1 PRACTICE PROBLEMS Page 2/4

2

int f(int arg) {
int j3;
char buf[16];
FILE *badfile;

s1: badfile = fopen("badfile", "r");
fread(buf, sizeof(char), 40, badfile);

s2: return arg + 1;
}

int g(int arg) { ... }

int main(int argc, char **argv) {
int j1;
int j2[4];
j1 = 123;
return f(j1);

}

Assume the Ubuntu environment of project 1.

This program is compiled without Stack Guard and executed
such that variable j1 is always at address 0x000001000.

Below, “draw the stack layout” means indicate, in the referred
figure, the contents of the stack from address 0x1000 to the top of
stack, and give the addresses (in hex) of the contents at the side.
Use “&g” to indicate the address of function g(). The stack grows
downward.

Below, “f() returns to g()” means that when control returns from
f(), it starts executing g() with any argument. And “f() returns
to g(4)” means that when control returns from f(), it starts exe-
cuting g() with an argument of 4.

0x1000

figure 0

j1

figure 1 figure 2 figure 3

2a. In figure 0, draw the stack layout when control comes to s1 (i.e., “badfile = fopen(..)” is to be executed next).

2b Assume badfile is such that f() returns to g(). In figure 1, draw the stack layout when control comes to s2 (i.e.,
“return arg + 1” is to be executed next). (Use “&g” to denote the address of function g().)

2c Assume badfile is such that f() returns to g(4). In figure 2, draw the stack layout when control comes to s2.

2d Does your answer for part 2a change if Address Randomization is turned on. Explain briefly.

2e Does your answer for part 2a change if the stack is made Non-Executable. Explain briefly.

2f Now assume the program is compiled with Stack Guard. In figure 3, draw the stack layout when control comes
to s1. Can file badfile be initialized so that func() returns to g(). Explain briefly.

414-S17 (Shankar) Exam 1 PRACTICE PROBLEMS Page 3/4

3 Here are two files owned by root:

• /passwd.txt: text file that contains user passwords. Root has read-write-execute access. All other users have no
access.

• /chpwd: executable file that users can run to change their passwords. Root has read-write-execute access. All
other users have write-execute access. The setuid bit is set (so it is a set-root-uid file).

Does this configuration allow an ordinary (i.e., non-root) user to delete passwd.txt?
If no, explain briefly.
If yes, briefly give the steps of the attack.

4 Website a.com has an SQL table Users with a row for every user and columns Name, Pwd, Age and others.

• A user changes its password with the GET request
http://a.com/chpwd.php?a1= <name>&a2= <opwd>&a3= <npwd>.

The server handles this with
chpwd.php:
$db->sql_query("UPDATE Users SET Pwd=’$npwd’ WHERE (Name=’$name’ AND Pwd=’$opwd’);");

• A user gets the names of all users with the GET request
http://a.com/getusers.php

The server handles this with
getusers.php:

$db->sql_query("SELECT User FROM Users WHERE 1=1;");

• Among the users are Ted and Bob (these are their Name entries). Ted does not know Bob’s Pwd value.

3a. Give the path of a GET request that Ted can issue in order to change Bob’s password to fqr123.

3b. Rewrite the chpwd code to use the prepare construct.

414-S17 (Shankar) Exam 1 PRACTICE PROBLEMS Page 4/4

5 This problem concerns a browser c1, website s1, and attacker website s2.

• c1 clicks http://s1/p1.html. In the response, s1 sets a cookie for domain s1.
• Then c1 clicks http://s2/p2.html.
• Then p1.html regularly issues POST requests to s1. Each POST request contains the cookie value in its data.

The server treats a request as valid iff the cookie value (in the request header) matches the value in the data.

For each of the following cases, answer whether p2.html can send a POST request to s1 that the latter treats as valid.
Write “YES” if it can, and “NO” if it cannot. (Below, “unguessable” is equivalent to “randomly generated”.)

s1-cookie name s1-cookie value your answer

guessable guessable

guessable unguessable

unguessable guessable

unguessable unguessable

6 When deposit() is called with user pointing to a valid User instance, it should update the user’s balance or return
0 upon error. Does the above function achieve that. If not, fix the function.

struct User {
unsigned int balance;

};

unsigned int deposit(struct User *user, unsigned int amount) {
user->balance += amount;
return user->balance;

}

7 The following function is in a program owned by root and executable by any user. ustr points to a string supplied
by the user. secret points to a string that is stored within the program and should not be disclosed to the user. The
function prints a message indicating the result of strcmp(ustr,secret). Can the function expose the secret string. If
so, fix the function.

int f(char* ustr, char* secret) {
printf(ustr);
if (strcmp(ustr, secret) <= 0)

printf(" <= secret");
else

printf(" > secret");
}

