Closed book.	Closed	notes.	No ei	lectronic devic	e.
010000 000011	010000				•••

1. For each description below, give the term (≤ 4 words) that *best* describes it. In most cases, the term will be in the table at left. In a few cases, it will not. 1. This ensures that the data can be read only by the intended receiver. Solution: Confidentiality 2. This ensures that any modification to the data is detected by the intended receiver. **Solution:** Integrity 3. This ensures that data received was sent by the specified sender. AES Solution: Authenticity Authenticity Block cipher 4. This ensures that a third party can verify that the data was sent by the specified Collision resistant sender. Solution: Non-repudiation CA 5. This kind of crypto uses different keys for encryption and decryption. Certificate Solution: Asymmetric crypto. (Alternative: Public-key crypto) Certificate chain 6. The attack model in which the attacker has access to an encryption oracle but not CRL Confidentiality a decryption oracle. **Solution:** Chosen plaintext attack DES 7. This symmetric block cipher supports only one key size. Solution: DES Diffie-Helman 8. This symmetric block cipher supports multiple key sizes. Solution: AES Dictionary attack Euclid's algorithm 9. This defines how to use a block cipher on arbitrary-size data. Solution: Mode Eucler's theorem 10. This ensures that encrypting the same message more than once results in different Existential forgery ciphertext. Solution: Initialization vector (IV) HMAC 11. This mode allows the block cipher encryption function calls to be made before the Integrity data is available. Solution: OFB (Alternative: CTR) KDC MAC 12. This mode allows encryption to be done in parallel. Mode **Solution:** OFB (Alternative: CTR) CBC 13. This mode allows a hash function to be used for encryption of arbitrary-size data. CTR **Solution:** OFB (Alternative: CTR) OFB 14. The property of a hash function that makes it hard to find a message m that hashes Non-repudiation to a given number. Solution: Pre-image resistant OCSP **OCSP** stapling 15. This is the standard method for generating MACs from block ciphers. One-time pad **Solution:** ECBC (Encrypted Cipher Block Chaining) Pre-image resistant 16. This is the standard method for generating MACs from hash functions. PGP Solution: HMAC (Hashed MAC) PKCS 17. This is the set of integers in $1, \dots, n-1$ that are relatively prime to n. PKI RSA Solution: Z_n^* Session key 18. This is the number of integers in $1, \dots, n-1$ that are relatively prime to n. Signing **Solution:** $\phi(n)$ (totient of *n*) Ticket 19. What do we need to efficiently compute the number of integers in $1, \dots, n-1$ that Totient function are relatively prime to n. Solution: Prime factors of nVerification 20. What allows us to efficiently compute $\phi(n)$. Solution: Prime factors of n 21. An attack that goes through a set of candidate passwords. Solution: Dictionary attack

- 22. This means that after a session-key is forgotten by the principals that used it, no one can decrypt data encrypted with that key. **Solution:** Perfect-forward secrecy
- 23. A public-key infrastructure that is not hierchical. Solution: PGP

2. Alice has an account with a server. The server makes her change her password every few months, to which Alice just increments a number in her password, e.g., pwd1, pwd2, \cdots .

Why does the server not complain that the new password is very much like her old one?

Solution Because the server does not have the old password (only a hash of it).

3. Let [e, n] be the RSA public key of a server. Suppose someone gives you the prime factors of n, say p and q. Can you obtain the private key [d, n]? If not, explain briefly. If yes, briefly give the steps.

Solution

Yes $\phi \leftarrow (p-1) \cdot (q-1)$ $d \leftarrow e^{-1} \text{mod-} \phi$ (using Euclid's algorithm).

4. A hash function H() generates a 256-bit hash. How many random messages on average would one have to hash before finding two distinct messages that hash to the same value.

Solution: Of the order of $\sqrt{2^{256}}$ (= 2^{128}) messages

5. Is a strong password significantly better than a weak password against an online dictionary attack. Explain briefly.

Solution: No. Because failed attempts are limited in number/frequency

6. Is a strong password significantly better than a weak password against an offline dictionary attack. Explain briefly.

Solution: Yes, especially if the attacker wants any password out of a large set. A weak password will be cracked before a strong password.

7. A server has N users and stores hashes of the users' passwords in a map P indexed by user id. Specifically, for user u, the entry P(u) is $H^4(p)$, where p is u's password, H is a hash function, and $H^4(p)$ is H(H(H(H(p)))).

a. What would the entry be if the entries were also "salted".

Solution: P(u) is $[salt, H^4(salt||p)]$

- b. If N is 20, does salting improve security significantly? Explain briefly.Solution: No. It's unlikely that the same password would be used in a list of 20 users.
- **8.** Let x be an element of Z_n and y denote its multiplicative-inverse-mod-n.
 - a. When does y exist? Solution: Iff gcd(x, n) = 1
 - b. Give the equation that x and y satisfy. Solution: $(x \cdot y) \mod -n = 1$

9. Let E(k, .) and D(k, .) denote AES encryption and decryption using key k. Let message msg consist of blocks $[m_1, \dots, m_n]$. Let $[c_0, c_1, \dots, c_n]$ be the ciphertext resulting from encrypting msg using AES with key k in some mode.

a. Assume CBC mode. Express c_i in terms of E() and D() and any arguments, for $i = 1, \dots, n$.

Solution: $c_0 = \text{random IV}$ $c_i = E(k, m_i \oplus c_{i-1}) \text{ for } i = 1, \dots, n$

b. Assume CTR mode. Express c_i in terms of E() and D() and any arguments, for $i = 1, \dots, n$.

Solution: $c_0 = \text{random IV}$ $c_i = E(k, c_0 + i) \oplus m_1 \text{ for } i = 1, \dots, n$

10. For an arbitrary-size message msg, let M(k, msg) denote the last block of CBC-AES encryption using key k and IV= 0. Is M(k, msg) a secure MAC. If you answer yes, explain briefly. If you answer no, give a counter example.

Solution:

No.

It is vulnerable to existential forgery.

- 1. Create message msg. Get its mac t (= M(k, msg)).
- 2. Create single-block message m.
- 3. Create single-block message $m \oplus t$. Get its mac $t' (= M(k, m \oplus t))$.

t' is a valid tag for message msg||m. (The ciphertext for block m is $E(k, x \oplus m)$, where x is the ciphertext for the block preceding m. But x is the same as t.)

11. Why is a random pad needed for RSA encryption of a msg.

Solution:

Two reasons:

- So that repeated encryptions of the same msg yield different ciphertexts.
- So that scrambling happens even if the message is small and *e* is small.

12. Server B has a well-known fixed IP address and TCP port, and no other service can use that address and port. User A shares a password, say pwd, with B. A connects as follows:

- 1. Establish a shared key s with a standard (not authenticated) Diffie-Helman.
- 2. Send ["A", pwd] encrypted with key s to the server.
- 3. B authenticates the user if the password matches.
- a. Assume an attacker that can only eavesdrop on messages. Does the above ensure that key s is securely shared between A and B. If you answer "no", give an attack. If you answer "yes", explain.

Solution:

Yes.

When A establishes a TCP connection to B's IP address and TCP port, A is assured it is talking to B (because no one else can use that address and port, and the attacker cannot tamper with messages). So after step 1, A is assured that the DH key s is shared with B.

After step 1, B is assured it has a DH key s with someone (need not be A). But after step 2, B is assured that the DH key is shared with A.

b. Repeat part a for an attacker that can eavesdrop and tamper with messages (intercept and change them).

Solution:

No.

- The classic MITM (man-in-the-middle attack) works here.
- a1. A establishes a TCP connection to B.
- a2. A generates random x and sends $g^x \mod p$.
- a3. Attacker intercepts this and does the following:
 - * generate random y
 - * set DH key, say $t_A \leftarrow g^{x \cdot y} \operatorname{mod-} p$
 - * send $g^y \mod p$ to B
- a4. When B receives the attacker's $g^y \mod p$ (from a3), B generates random z, sets DH key, say $s_B \leftarrow g^{z \cdot y} \mod p$, and sends $g^z \mod p$.
- a5. Attacker intercepts this and does the following:
 - * set DH key, say $t_B \leftarrow g^{z \cdot y} \text{mod-} p$
 - $* \operatorname{send} g^y \operatorname{mod-} p$ to A
- a6. When A receives the attacker's $g^y \mod p$ (from a5), it sets DH key, say $s_A \leftarrow g^{x \cdot y} \mod p$.

[At this point, A and attacker share DH key s_A , and B and attacker share DH key s_B .]

- a7. A sends ["A", pwd] encrypted with key s_A .
- a8. Attacker intercepts this and does the following:
 - * decrypts it (using s_A)
 - * encrypts it using s_B and sends it to B.

Attacker now has *pwd*.

a9. B receives attacker's msg (from a7), verifies pwd, and now treats DH key s_B as shared with A (whereas it is actually shared with the attacker).

- **13.** A domain has a CA X, which is the trust anchor for the domain's users.
 - a. What steps does a new user, say A, take upon joining the domain.

Solution:

- A generates a new public-key pair, say $[sk_A, pk_A]$. A gets from X a certificate for A's public key, say $cert_{X,A}$. A gets X's public key.
- b. What steps are taken when a user, say A, leaves the domain before its certificate expires.

Solution: X adds the certificate's serial number to the next CRL it issues, and gives a "not valid" response to any OCSP query for the certificate.

c. What steps are taken when X's secret key is exposed.

Solution:

X generates a new public-key pair X issues a new certificate (using the new key) for every A_i Every A_i deletes its old public key of X Every A_i gets (securely) the new public key of X

Note

- X issuing a CRL using the old key is useless. (Could be issued by the attacker).
- X issuing a CRL using the new key is useless. (After A_i deletes X's old pub key, the old certs won't work.)

14. The users in domain x.com has a CA X as trust anchor. The users in domain y.com has a CA Y as trust anchor. One day, x.com and y.com are acquired by z.com, which has a CA Z as trust anchor.

List the steps that will allow users in all three domains to talk to each other. Minimize the number of new certificates that are issued.

Solution:

- 1. Z issues certificates for X and Y.
- 2. Users in x.com and y.com get Z's public key and add Z as a trust anchor.
- **15.** A domain's authentication is handled by KDC X.
 - a. What steps does a new user, say A, take upon joining the domain.

Solution: A generates a new master key and shares it with X. X adds A and the key to its users table.

- b. What steps are taken when a user, say A, leaves the domain.Solution: X deletes its entry for the A in the users table.
- c. What steps are taken when X's key (used to encrypt the user keys in the users table) is exposed.Solution: X generates a new key, and asks all users to generate new master keys.

16. A domain's authentication is handled by KDC X. Tickets can have long expiry times. Consider the following:

- 1. A gets a post-dated ticket T from the KDC to interact with server B.
- 2. *B* changes its master key with the KDC.
- 3. A presents T to B.

What is the problem here? What is a solution?

Solution:

- **Problem:** Ticket T is encrypted with B's old master key (shared with X). So when B decrypts T with its current master key, B cannot make sense of the contents and will reject T.
- One fix: Version numbers to master keys:
 - The KDC stores for user A the current master key and its version number.
 - B remembers its old master keys and their version numbers (until tickets issued under them have expired).
 - Each ticket contains the version number (unencrypted) of the master key used to encrypt the ticket. So *B* knows which key to use to decrypt the ticket.

17. Authentication protocols

This problem has independent parts. Each part describes an authentication protocol that Alice (A) initiates to send a message m to Bob (B), and then asks one or more questions.

- The first question lists some properties: **confidentiality**, **integrity**, **authenticity**, **non-repudiation**, **none** and **broken**. Circle all of the *first four* properties that hold for the message. Circle **none** if *none* of the first four properties hold. Circle **broken** if the protocol requires Alice or Bob to do something they cannot (e.g., decrypt a message without the key); in this case, ignore the other properties and any additional questions in that problem.
- The additional questions, if any, have **true/false** answers.

Unless otherwise stated, symmetric keys are strong, and the attacker can eavesdrop and tamper with messages.

The following conventions are as in the slides:

$[sk_A, pk_A]$	Alice's public-key pair. Bob has pk_A .
$[sk_B, pk_B]$	Bob's public-key pair. Alice has pk_B .
$E_{P}(pk,x)$	public-key encryption of x with public key pk
Sgn(sk,x)	public-key signing of x with secret key sk
E(s,x)	symmetric-key encryption of x in CBC mode using AES with key s
D(s,x)	symmetric-key deryption of x in CBC mode using AES with key s
MAC(s, x)	symmetric-key MAC (ECBC) of x using key s
H(x)	SHA-256 hash function of x
HMAC(k, x)	HMAC of x using key k and H

17.1.

	A: generate a new symmetric key s					
	send $[E_{P}(pk_B, s), E(s, m),$		D			
	$Sgn(sk_A,H(m))]$		B: receive measure extract m	ssage		
a.	Circle all that hold: confidentiality	integrity	authenticity	non-repudiation	none	broken
	Solution:					
	 confidentiality: Yes. integrity: Yes. authenticity: Yes. non-repudiation: Yes. 	// H(// s is new, (m) is signed by	m is encrypted by s , sk_A , so any change t // H // H	s is encry to $E(s, m)$ I(m) is s I(m) is s	ypted by pk_B a) is detected. igned by sk_A igned by sk_A
b.	If s comes from a password and m has s	structure, this	s is vulnerable to	an offline dictionary a	attack:	Frue False
	Solution: True			// .	Attacker	sees $E(s,m)$
c.	This has perfect forward secrecy: Tru	e False				
	Solution: False		// 1	If attacker gets sk_B , i	it can dec	erypt $E(s,m)$
17.2.	A and B share a symmetric key s .					
-	A: generate random c_A					
	$n_A \leftarrow E(s, [1, c_A])$		D			
	send $[n_A]$		B: receive met	D(s, n, k)		
			$[x, c_A]$ if $(x \neq 1)$	"FAIL"		
			generate ra	ndom c_B		
			$n_B \leftarrow E(s$	$(c_B, c_A + 1])$		
	A: receive message		send $[n_B]$			
	$[c_B, r_A] \leftarrow D(s, n_B)$ if $(r_A \neq c_A \pm 1)$ "FAU"					
	$r_B \leftarrow E(s, c_B + 1)$					
	session key $x \leftarrow c_A \oplus c_B$					
	send $[r_B, E(x,m), MAC(x,m)]$		B: receive me	ssage		
			if $(D(s, r_B))$ extract msg	$p \neq c_B + 1$) "FAIL" m	,	
a.	Circle all that hold: confidentiality	integrity	authenticity	non-repudiation	none	broken
	Solution [.]		·			
	– confidentiality: Yes.			// m is encrypted	by s, s i	s not exposed
	- integrity: Yes.		// N	IAC(s, m) assures B	that m v	vas sent by A
	- authenticity: Yes.		// N	IAC(s, m) assures B	that m v	vas sent by A
	– non-repudiation: No. // to a thi	rd-party (eve	n knowing s), M	AC(s, m) could have	e been ge	enerated by B
b.	If s comes from a password, this is vul	nerable to a	dictionary attack	: True False		
	Solution: True		// Attacke	er sees $E(s, [1, c_A])$ a	nd $E(s, $	$[c_B, c_A + 1])$
c.	This has perfect forward secrecy : T	rue False				
	Solution: False		// If attacl	ker gets <i>s</i> , it can get <i>a</i>	and dec	rypt $E(x,m)$

17.3. A and B do Diffie-Helman with parameters p and g.

A: generate random x					
$T_A \leftarrow g^x mod-p$					
send $[T_A]$	B: receive message				
	generate random y				
	$T_B \leftarrow q^y mod-p$				
	$s \leftarrow T_A^{y}$				
A: receive message	send $[T_B]$				
$s \leftarrow T_B{}^x$					
send $[E(s,m)]$	B: receive message				
	extract msg m				
Circle all that hold: confidentiality integ	rity authenticity non-repudiation i	none broken			
Solution: none	// man-in-the-middle attack	(see solution to 12b)			
17.4. Repeat 17.4 assuming the attacker can	only eavesdrop (but not tamper).				
Circle all that hold: confidentiality integ	grity authenticity non-repudiation i	10ne broken			
Solution:					
• confidentiality: Yes.		// see solution to 12a			
• integrity: Yes.	// Attack	er can only eavesdrop			
• authenticity: Yes.	// Attack	er can only eavesdrop			

• non-repudiation: No.

// to a third-party, B could have generated msg m