For each description below, give the term (≤ 4 words) that best describes it. In most cases, the term will be in the table at left. In a few cases, it will not.

1. This ensures that the data can be read only by the intended receiver. Solution: Confidentiality
2. This ensures that any modification to the data is detected by the intended receiver. Solution: Integrity
3. This ensures that data received was sent by the specified sender. Solution: Authenticity
4. This ensures that a third party can verify that the data was sent by the specified sender. Solution: Non-repudiation
5. This kind of crypto uses different keys for encryption and decryption.

Solution: Asymmetric crypto. (Alternative: Public-key crypto)
6. The attack model in which the attacker has access to an encryption oracle but not a decryption oracle. Solution: Chosen plaintext attack
7. This symmetric block cipher supports only one key size. Solution: DES
8. This symmetric block cipher supports multiple key sizes. Solution: AES
9. This defines how to use a block cipher on arbitrary-size data. Solution: Mode
10. This ensures that encrypting the same message more than once results in different ciphertext. Solution: Initialization vector (IV)
11. This mode allows the block cipher encryption function calls to be made before the data is available. Solution: OFB (Alternative: CTR)
12. This mode allows encryption to be done in parallel.

Solution: OFB (Alternative: CTR)
13. This mode allows a hash function to be used for encryption of arbitrary-size data. Solution: OFB (Alternative: CTR)
14. The property of a hash function that makes it hard to find a message m that hashes to a given number. Solution: Pre-image resistant
15. This is the standard method for generating MACs from block ciphers.

Solution: ECBC (Encrypted Cipher Block Chaining)
16. This is the standard method for generating MACs from hash functions. Solution: HMAC (Hashed MAC)
17. This is the set of integers in $1, \cdots, n-1$ that are relatively prime to n. Solution: Z_{n}^{*}
18. This is the number of integers in $1, \cdots, n-1$ that are relatively prime to n. Solution: $\phi(n)$ (totient of n)
19. What do we need to efficiently compute the number of integers in $1, \cdots, n-1$ that are relatively prime to n. Solution: Prime factors of n
20. What allows us to efficiently compute $\phi(n)$. Solution: Prime factors of n
21. An attack that goes through a set of candidate passwords.

Solution: Dictionary attack
22. This means that after a session-key is forgotten by the principals that used it, no one can decrypt data encrypted with that key. Solution: Perfect-forward secrecy
23. A public-key infrastructure that is not hierchical. Solution: PGP
2. Alice has an account with a server. The server makes her change her password every few months, to which Alice just increments a number in her password, e.g., pwd1, pwd2, \cdots.
Why does the server not complain that the new password is very much like her old one?
Solution Because the server does not have the old password (only a hash of it).
3. Let $[e, n]$ be the RSA public key of a server. Suppose someone gives you the prime factors of n, say p and q. Can you obtain the private key $[d, n]$? If not, explain briefly. If yes, briefly give the steps.

Solution

Yes
$\phi \leftarrow(p-1) \cdot(q-1)$
$d \leftarrow e^{-1} \bmod -\phi$ (using Euclid's algorithm).
4. A hash function $H()$ generates a 256-bit hash. How many random messages on average would one have to hash before finding two distinct messages that hash to the same value.

Solution: Of the order of $\sqrt{2^{256}}\left(=2^{128}\right)$ messages
5. Is a strong password significantly better than a weak password against an online dictionary attack. Explain briefly.

Solution: No. Because failed attempts are limited in number/frequency
6. Is a strong password significantly better than a weak password against an offline dictionary attack. Explain briefly.

Solution: Yes, especially if the attacker wants any password out of a large set. A weak password will be cracked before a strong password.
7. A server has N users and stores hashes of the users' passwords in a map P indexed by user id. Specifically, for user u, the entry $P(u)$ is $H^{4}(p)$, where p is u 's password, H is a hash function, and $H^{4}(p)$ is $\left.H(H(H(H)))\right)$.
a. What would the entry be if the entries were also "salted".

Solution: $P(u)$ is $\left[s a l t, H^{4}(s a l t \| p)\right]$
b. If N is 20 , does salting improve security significantly? Explain briefly.

Solution: No. It's unlikely that the same password would be used in a list of 20 users.
8. Let x be an element of Z_{n} and y denote its multiplicative-inverse-mod- n.
a. When does y exist?

Solution: Iff $\operatorname{gcd}(x, n)=1$
b. Give the equation that x and y satisfy.

Solution: $(x \cdot y) \bmod -n=1$
9. Let $E(k,$.$) and D(k,$.$) denote AES encryption and decryption using key k$. Let message $m s g$ consist of blocks [m_{1}, \cdots, m_{n}]. Let $\left[c_{0}, c_{1}, \cdots, c_{n}\right]$ be the ciphertext resulting from encrypting $m s g$ using AES with key k in some mode.
a. Assume CBC mode. Express c_{i} in terms of $E()$ and $D()$ and any arguments, for $i=1, \cdots, n$.

Solution:

$c_{0}=$ random IV
$c_{i}=E\left(k, m_{i} \oplus c_{i-1}\right)$ for $i=1, \cdots, n$
b. Assume CTR mode. Express c_{i} in terms of $E()$ and $D()$ and any arguments, for $i=1, \cdots, n$.

Solution:

$c_{0}=$ random IV
$c_{i}=E\left(k, c_{0}+i\right) \oplus m_{1}$ for $i=1, \cdots, n$
10. For an arbitrary-size message $m s g$, let $M(k, m s g)$ denote the last block of CBC-AES encryption using key k and $\mathrm{IV}=0$. Is $M(k, m s g)$ a secure MAC. If you answer yes, explain briefly. If you answer no, give a counter example.

Solution:

No.
It is vulnerable to existential forgery.

1. Create message $m s g$. Get its mac $t(=M(k, m s g))$.
2. Create single-block message m.
3. Create single-block message $m \oplus t$. Get its mac $t^{\prime}(=M(k, m \oplus t)$).
t^{\prime} is a valid tag for message $m s g \| m$. (The ciphertext for block m is $E(k, x \oplus m)$, where x is the ciphertext for the block preceding m. But x is the same as t.)
4. Why is a random pad needed for RSA encryption of a msg.

Solution:

Two reasons:

- So that repeated encryptions of the same msg yield different ciphertexts.
- So that scrambling happens even if the message is small and e is small.

12. Server B has a well-known fixed IP address and TCP port, and no other service can use that address and port. User A shares a password, say $p w d$, with $B . A$ connects as follows:
13. Establish a shared key s with a standard (not authenticated) Diffie-Helman.
14. Send [" A ", $p w d$] encrypted with key s to the server.
15. B authenticates the user if the password matches.
a. Assume an attacker that can only eavesdrop on messages. Does the above ensure that key s is securely shared between A and B. If you answer "no", give an attack. If you answer "yes", explain.

Solution:

Yes.
When A establishes a TCP connection to B 's IP address and TCP port, A is assured it is talking to B (because no one else can use that address and port, and the attacker cannot tamper with messages). So after step $1, A$ is assured that the DH key s is shared with B.
After step $1, B$ is assured it has a DH key s with someone (need not be A). But after step $2, B$ is assured that the DH key is shared with A.
b. Repeat part a for an attacker that can eavesdrop and tamper with messages (intercept and change them).

Solution:

No.
The classic MITM (man-in-the-middle attack) works here.
a1. A establishes a TCP connection to B.
a2. A generates random x and sends g^{x} mod- p.
a3. Attacker intercepts this and does the following:

* generate random y
* set DH key, say $t_{A} \leftarrow g^{x \cdot y} \bmod -p$ * send g^{y} mod- p to B
a4. When B receives the attacker's g^{y} mod- p (from a3), B generates random z, sets DH key, say $s_{B} \leftarrow$ $g^{z \cdot y} \bmod -p$, and sends $g^{z} \bmod -p$.
a5. Attacker intercepts this and does the following:
$*$ set DH key, say $t_{B} \leftarrow g^{z \cdot y}$ mod- p
* send g^{y} mod- p to A
a6. When A receives the attacker's $g^{y} \bmod -p$ (from a5), it sets DH key, say $s_{A} \leftarrow g^{x \cdot y} \bmod -p$.
[At this point, A and attacker share DH key s_{A}, and B and attacker share DH key s_{B}.]
a7. A sends [" A ", $p w d]$ encrypted with key s_{A}.
a8. Attacker intercepts this and does the following:
* decrypts it (using s_{A})
* encrypts it using s_{B} and sends it to B.

Attacker now has $p w d$.

a9. B receives attacker's msg (from a7), verifies $p w d$, and now treats DH key s_{B} as shared with A (whereas it is actually shared with the attacker).
13. A domain has a CA X, which is the trust anchor for the domain's users.
a. What steps does a new user, say A, take upon joining the domain.

Solution:

A generates a new public-key pair, say $\left[s k_{A}, p k_{A}\right]$.
A gets from X a certificate for A 's public key, say $\operatorname{cert}_{X, A}$.
A gets X 's public key.
b. What steps are taken when a user, say A, leaves the domain before its certificate expires.

Solution: X adds the certificate's serial number to the next CRL it issues, and gives a "not valid" response to any OCSP query for the certificate.
c. What steps are taken when X 's secret key is exposed.

Solution:

X generates a new public-key pair
X issues a new certificate (using the new key) for every A_{i}
Every A_{i} deletes its old public key of X
Every A_{i} gets (securely) the new public key of X

Note

- X issuing a CRL using the old key is useless. (Could be issued by the attacker).
- X issuing a CRL using the new key is useless. (After A_{i} deletes X 's old pub key, the old certs won't work.)

14. The users in domain x. com has a CA X as trust anchor. The users in domain y . com has a CA Y as trust anchor. One day, x.com and y.com are acquired by z.com, which has a CA Z as trust anchor.
List the steps that will allow users in all three domains to talk to each other. Minimize the number of new certificates that are issued.

Solution:

1. Z issues certificates for X and Y.
2. Users in x .com and y .com get Z 's public key and add Z as a trust anchor.
3. A domain's authentication is handled by KDC X.
a. What steps does a new user, say A, take upon joining the domain.

Solution: A generates a new master key and shares it with $X . X$ adds A and the key to its users table.
b. What steps are taken when a user, say A, leaves the domain.

Solution: X deletes its entry for the A in the users table.
c. What steps are taken when X 's key (used to encrypt the user keys in the users table) is exposed.

Solution: X generates a new key, and asks all users to generate new master keys.
16. A domain's authentication is handled by KDC X. Tickets can have long expiry times. Consider the following:

1. A gets a post-dated ticket T from the KDC to interact with server B.
2. B changes its master key with the KDC.
3. A presents T to B.

What is the problem here? What is a solution?
Solution:

- Problem: Ticket T is encrypted with B 's old master key (shared with X). So when B decrypts T with its current master key, B cannot make sense of the contents and will reject T.
- One fix: Version numbers to master keys:
- The KDC stores for user A the current master key and its version number.
- B remembers its old master keys and their version numbers (until tickets issued under them have expired).
- Each ticket contains the version number (unencrypted) of the master key used to encrypt the ticket. So B knows which key to use to decrypt the ticket.

17. Authentication protocols

This problem has independent parts. Each part describes an authentication protocol that Alice (A) initiates to send a message m to $\operatorname{Bob}(B)$, and then asks one or more questions.

- The first question lists some properties: confidentiality, integrity, authenticity, non-repudiation, none and broken. Circle all of the first four properties that hold for the message. Circle none if none of the first four properties hold. Circle broken if the protocol requires Alice or Bob to do something they cannot (e.g., decrypt a message without the key); in this case, ignore the other properties and any additional questions in that problem.
- The additional questions, if any, have true/false answers.

Unless otherwise stated, symmetric keys are strong, and the attacker can eavesdrop and tamper with messages.
The following conventions are as in the slides:

$\left[s k_{A}, p k_{A}\right]$	Alice's public-key pair. Bob has $p k_{A}$.
$\left[s k_{B}, p k_{B}\right]$	Bob's public-key pair. Alice has $p k_{B}$.
$\mathrm{E}_{\mathrm{P}}(p k, x)$	public-key encryption of x with public key $p k$
$\mathrm{Sgn}(s k, x)$	public-key signing of x with secret key $s k$
$\mathrm{E}(s, x)$	symmetric-key encryption of x in CBC mode using AES with key s
$\mathrm{D}(s, x)$	symmetric-key deryption of x in CBC mode using AES with key s
$\mathrm{MAC}(s, x)$	symmetric-key MAC (ECBC) of x using key s
$\mathrm{H}(x)$	SHA-256 hash function of x
$\mathrm{HMAC}(k, x)$	HMAC of x using key k and H

17.1.

A : generate a new symmetric key s
send $\left[\mathrm{E}_{\mathrm{p}}\left(p k_{B}, s\right), \mathrm{E}(s, m)\right.$,

$$
\left.\operatorname{Sgn}\left(s k_{A}, \mathrm{H}(m)\right)\right] \quad B \text { : receive message }
$$

extract m
a. Circle all that hold: confidentiality integrity authenticity non-repudiation none broken

Solution:

- confidentiality: Yes.
- integrity: Yes.
- authenticity: Yes.
- non-repudiation: Yes.
$/ / s$ is new, m is encrypted by s, s is encrypted by $p k_{B}$ $/ / H(m)$ is signed by $s k_{A}$, so any change to $E(s, m)$ is detected. $/ / H(m)$ is signed by $s k_{A}$
$/ / H(m)$ is signed by $s k_{A}$
b. If s comes from a password and m has structure, this is vulnerable to an offline dictionary attack: True False

Solution: True
// Attacker sees $E(s, m)$
c. This has perfect forward secrecy: True False

Solution: False
// If attacker gets $s k_{B}$, it can decrypt $E(s, m)$
17.2. A and B share a symmetric key s.
A : generate random c_{A}
$n_{A} \leftarrow \mathrm{E}\left(s,\left[1, c_{A}\right]\right)$
send $\left[n_{A}\right] \quad B$: receive message
$\left[x, c_{A}\right] \leftarrow \mathrm{D}\left(s, n_{A}\right)$
if $(x \neq 1)$ "FAIL"
generate random c_{B}
$n_{B} \leftarrow \mathrm{E}\left(s,\left[c_{B}, c_{A}+1\right]\right)$
A : receive message
send $\left[n_{B}\right]$
$\left[c_{B}, r_{A}\right] \leftarrow \mathrm{D}\left(s, n_{B}\right)$
if $\left(r_{A} \neq c_{A}+1\right)$ "FAIL"
$r_{B} \leftarrow \mathrm{E}\left(s, c_{B}+1\right)$
session key $x \leftarrow c_{A} \oplus c_{B}$
send $\left[r_{B}, \mathrm{E}(x, m), \mathrm{MAC}(x, m)\right]$
B : receive message
\quad if $\left(\mathrm{D}\left(s, r_{B}\right) \neq c_{B}+1\right) \quad$ "FAIL"
\quad extract $\operatorname{msg} m$
a. Circle all that hold: confidentiality integrity authenticity non-repudiation none broken

Solution:

- confidentiality: Yes.
- integrity: Yes.
$/ / m$ is encrypted by s, s is not exposed
- authenticity: Yes. $/ / \operatorname{MAC}(s, m)$ assures B that m was sent by A
- non-repudiation: No. // to a third-party (even knowing s), $\operatorname{MAC}(s, m)$ could have been generated by B
b. If s comes from a password, this is vulnerable to a dictionary attack: True False

Solution: True
$/ /$ Attacker sees $E\left(s,\left[1, c_{A}\right]\right)$ and $E\left(s,\left[c_{B}, c_{A}+1\right]\right)$
c. This has perfect forward secrecy: True False

Solution: False
$/ /$ If attacker gets s, it can get x and decrypt $E(x, m)$
17.3. A and B do Diffie-Helman with parameters p and g.

```
\(A\) : generate random \(x\)
    \(T_{A} \leftarrow g^{x} \bmod -p\)
    send \(\left[T_{A}\right] \quad B\) : receive message
    generate random \(y\)
    \(T_{B} \leftarrow g^{y}\) mod- \(p\)
    \(s \leftarrow T_{A}{ }^{y}\)
\(A\) : receive message
    send \(\left[T_{B}\right]\)
    \(s \leftarrow T_{B}{ }^{x}\)
    send \([E(s, m)]\)
    \(B\) : receive message
    extract \(\mathrm{msg} m\)
```

Circle all that hold: confidentiality integrity authenticity non-repudiation none broken
Solution: none
// man-in-the-middle attack (see solution to 12b)
17.4. Repeat 17.4 assuming the attacker can only eavesdrop (but not tamper).

Circle all that hold: confidentiality integrity authenticity non-repudiation none broken

Solution:

- confidentiality: Yes.
- integrity: Yes.
- authenticity: Yes.
- non-repudiation: No.
// see solution to 12 a
// Attacker can only eavesdrop
// Attacker can only eavesdrop
$/ /$ to a third-party, B could have generated $\mathrm{msg} m$

