
Project 3

Overlay Routing & Distributed Transaction Processing

CMSC 417 Spring 2017

Updated: March 9 2017

1 Deadline

This project will comprise multiple parts. Each part will have a separate due date.

2 Introduction

In this project, you will apply what you have learned throughout the semester to build an overlay
routing system that uses Link State routing to pass messages between arbitrary nodes.

Overlay routing is routing that happens at the application layer. The application layer
processes on a given node, connect to application layer processes on other nodes to build routing
tables and pass messages.

This project is intended to be “open ended” in the sense that we leave many of design decisions
for you to make. We want to see that you possess the ability to not only design and implement
a system, but to defend your design decisions. As such, your grade will be based not only on
your implementation but on a writeup that you will turn in at the end of the project. Do not
underestimate the difficulty of this project.

Environment

You will run this project in the CORE network environment. The basis of this project is that you
have several groups of nodes which are directly connected. When you load the network configu-
ration, you should notice (and test this), nodes that are directly connected to each can ping each
other. However, nodes that are not directly connected to each other cannot ping each other. Why
is this? The short answer is that they don’t know how.

Background

Let’s discuss some network routing background (really this should be just a refresher; and will be
presented at a high-level). When you connect your computer to your home network, what really
happens? The router that you get from your ISP (really, it’s a NAT Box), connects to the next
hop router.

1



EXAMPLE: Open up a command line and run a traceroute to www.cs.umd.edu. On win-
dows you can use tracert www.cs.umd.edu and on Unix (Linux or Mac) it should be traceroute
www.cs.umd.edu

In the example, you’ll see all of the intermediate routers that the packets you sent from your
machine to my server took. The first entry is the router (or access point) you are connected to. If
you’re on a home or residential network, chances are the first hop is just a consumer grade NAT
Box (it doesn’t really know how to route to much). Basically, all that router knows how to handle
is: if traffic is for the local network, route it to that node, otherwise, just send it to the ISP and
let the ISP handle it. Those are the basics of routing.

Going back to the question in the CORE environment, why can’t nodes that aren’t directly
connected ping each other? The longer answer is that there’s not a routing protocol running on
the nodes to tell them what to do with the traffic. Nodes basically know the identity of the node
on the other end of a connection, but nothing beyond that.

What you will be doing

Your task is to implement an application layer protocol using the fact that nodes know how to
communicate with their direct neighbors. Using this simple fact, you will enable communication
between arbitrary nodes. Your code will run at the application layer. Instances applications running
on different nodes will be able to communicate with instances running on other nodes. Put another
way, instances of your application will be able to communicate across nodes.

What you will NOT be doing

You are NOT writing a generalized routing protocol to facilitate arbitrary data transfer. That
is to say, even after your project is finished, arbitrary nodes will not be able to ping each other
using the Unix command “ping.” However, they will be able to send “ping messages” to each other
through your application.

3 Team Project

This project will be done in groups of 2. However, each group member is responsible for making
his or her own submissions. All students must work on all aspects of the project. ALL STU-
DENTS ARE RESPONSIBLE FOR MAINTAINING AND SUBMITTING THEIR
OWN CODEBASES Why? In the past, there have been issues where one group member forgets
to submit an assignment by the deadline and the other group members start frantically emailing
the TAs asking for an exception. To avoid this, you are responsible for working on, maintaining,
and submitting your own codebase.

Note: you made turn in a code base that is identical to your partner. Note 2: if your partner
is not doing his or her fair share of the work, you are free to not share code.

4 Requirements

1. You must implement this project in Ruby. In this past, this project has been done in C,
but the reality is that just getting the C code to work correctly consumes a huge amount of

2



time. The goal of this project is to help you design protocols and design complete distributed
system, not to debug C code.

2. You may NOT use any specialized libraries. (By this, we mean that we don’t want you to
pull an entire implementation of Dijkstra’s algorithm from the Internet)

3. You MUST use CORE for this project.

4. You may NOT use RPC (Remote Procedure Calls) for any part of this project.

5. Nodes must communicate using only network connections; i.e. they may not communicate
via config files, etc.

6. Each node should keep it’s own internal clock; at the beginning of execution, each node may
make a single call to Ruby’s Time library. Each node should store the time in a local variable,
and keep the variable up to date. You may use a timer to regularly update the variable, but
you may NOT get the time from the OS again.

5 Testing

Unlike in previous projects, the goal of testing will not be to see how your code is handling mal-
formed input. For the most part, you may assume that we are giving your code valid input.

6 Time Table

The due dates for the various parts can be found on the class web page.

6.1 Parts

Each part will be submitted and graded separately. You are free to make modifications to earlier
parts of the code after you have submitted it to complete a later part. Doing so will not affect your
grade for earlier parts. Do not include additional functionality when submitting. This is important
because if you include Link State routing updates in your part 0 submission, it will cause the tests
to fail.

Part 0: Routing Table

The first step of this project is to build the routing tables. In this part, you will enable your nodes
to connect to each other and exchange edge information You will need to make a data structure to
hold information about routing tables. At this point, nodes should only know information about
their “next hop” neighbors.

For Part 0, you will need to have the following methods implemented (see below for a description)

• EDGEB

• DUMPTABLE

• SHUTDOWN

3



Note: at this point, nodes should not disseminate edge information to neighbors, except for the
purpose of performing the intial EDGEB command.

Part 1: Routing Core

In this part, you will enable nodes to send and receive link state updates from neighbors to obtain a
full picture of the network Nodes will receive updates from the console and build edges accordingly.
Nodes should run an algorithm such as Dijkstra (or Bellman-Ford if you’re feeling creative).

For Part 1, you will need to have the following methods implemented (see below for a description)

• EDGED

• EDGEU

• STATUS

Part 2: Messages 1

In this part, you will enable nodes to send and receive messages. While many of these messages
resemble protocols that exist in practice today, you are free to design them as you see fit. Your
grade will partly be based on how well you design these protocols. In your final report, you will be
asked to justify all of the decisions that you made, so make sure that you can not only recognize
what you are doing, but why.

For Part 2, you will need to have the following methods implemented (see below for a description)

• SENDMSG

• PING

• TRACEROUTE

Message Formats

API

Your application should ultimately act as a server to the outside world. That is, it should listen for
connections from other nodes and handle them accordingly. End nodes need to be able to accept
messages from the end user (as well as deliver messages to the user) You should use STDIN and
STDOUT for this.

Console Operation

commands will be given in the form of: command [args] Here are some examples of messages:

• SENDMSG N1 ”Hello World” : send the message “Hello World” to the process running on
N1

• PING N2 3 5: send 3 ping control messages to the process running on N2, separated by 5
seconds

4



Commands: Descriptions

The following section describes the input, output and formatting of the commands

DUMPTABLE

• Format: DUMPTABLE [FILENAME]

• Description: When a node receives a DUMPTABLE command from the console, it should
write its current view of the routing table as a CSV (with NO headers) to the file specified
by FILENAME. The file should be created in the current working directory, and should be
created if it does not already exist. If the file already exists, it should be overwritten. The
file name will not include a leading “./”

Requirements

1. Each row of the table should be formatted as follows: src,dst,nextHop,distance

2. Your routing table should be sorted lexicographically, first by src (this will all be the same
node, obviously), then by dst, then by nextHop, then by distance.

3. Do NOT include nodes for which the current node does not have a path

4. Do NOT include the implicit self-edge in the routing table

5. Use node names, NOT IP addresses

SHUTDOWN

• Format: SHUTDOWN

• Description: This should cleanly shutdown the node and flush all pending write buffers
(stdout, files, stderr). The node should exit with status 0

STATUS

• Format: STATUS

• Description:The node should print out the following status information, formatted as fol-
lows:

Name: <nodename>
Port: <port the node is listening on>
Neighbors: <lexicographically sorted list of neighbors, separated with commas and no spaces>

5



EDGEB

• Format: EDGEB [SRCIP] [DSTIP] [DST]

• Description: This method creates a symmetric edge between the node on which the com-
mand is run, and the node specified by DST. By symmetric, we mean that the node specified
by DST should have the reverse edge in its routing table. The cost of the edge should be
initialized to 1. SRCIP and DSTIP are given to facilitate the initial connection between the
nodes. This will enable your edges to be build without the need for address resolution (as is
the case in NRL’s CORE).

Requirements

• You must keep connections between nodes open until the program exits until EDGED is
called. You are NOT free to create a new connection every time a message needs to be
passed; if the connection goes down you may re-establish it.

• We will only call EDGEB once for each edge, the node on which the method is called is
responsible for sharing the required information with the destination node for the destination
node to set up a reverse edge.

• You must use a single TCP connection

• If DST is not a direct neighbor of the node, the method should fail silently (do not produce
an error message.

EDGEU

• Format: EDGEU [DST] [COST]

• Description: This method updates the cost of the link from the current node to the neighbor
node specified by DST.

Requirements

• COST will be a valid 32 bit integer (the cost between any two nodes can be represented by
an integer)

• DST will be a direct neighbor of the current node.

• We will always call EDGEU on an edge that should be valid; by should we mean that EDGEB
has been called and not EDGED.

• This method should produce no output if any of the fields are invalid or missing

• NOTE: this method is NOT symmetric; calling this method only updates the cost one way.
That means that edges can have different costs depending on the direction.

6



EDGED

• Format: EDGED [DST]

• Description: This method destroys the edge from the source node to the dst node (i.e.
removes all state information).

Requirements

• NOTE: this method is NOT symmetric; calling this method only destroys the edge on one
node.

• Once this method has been called, the edge is invalid in both directions.

• We will always call EDGED on both nodes

• This method does not need to support fragmentation

SNDMSG

• Format: SNDMSG [DST] [MSG]

• Description: This method will deliver the string MSG to the process running on DST.

• Output (Source) Success: <nothing>

• Output (Source) Failure : SENDMSG ERROR: HOST UNREACHABLE

1. The source should print this message if it is unable to deliver the entire message to the
DST.

• Output (Destination Success): SENDMSG: [SRC] −− > [MSG]

• Output (Destination Failure): <nothing>

Requirements

• The parameter ”MSG” will start and end with quotation marks. It will not contain quotation
marks anywhere else in the string; the quotation marks must be printed at the destination.

• We may call this method when a source is unreachable.

• This method must support fragmentation

PING

• Format: PING [DST] [NUMPINGS] [DELAY]

• Description: This method will send NUMPINGS ping messages to the DST. There should
be a delay of DELAY seconds between pings.

• Output (Source) Success: [SEQ ID] [TARGET NODE] [ROUND TRIP TIME]

7



1. SEQ ID should start at 0 and increase by one every round

2. Subsequent calls to ping should start at SEQ ID 0

3. Use the ping timeout option found in the config file

4. If a response to a lower number ping is received first, you may print it immediately.

5. For an example open a terminal window and type: ping www.cs.umd.edu

• Output (Source) Failure : PING ERROR: HOST UNREACHABLE

1. A failure is considered to have occurred if a response to a ping is not heard within the
ping timeout interval.

2. The failure of one ping message should not affect other the other NUMPINGS-1 mes-
sages.

• Output (Destination Success: <nothing>

• Output (Destination Failure: <nothing>

TRACEROUTE

• Format: TRACEROUTE [DST]

• Description: This method will perform traceroute from the SRC to the DST

• Output (Source) Success: [HOPCOUNT] [HOSTID] [TIME TO NODE]

1. There should be one line of output for each node in the path from SRC to DST

2. The SRC node should be included in the output

3. The SRC node is considered HOPCOUNT of 0

4. The SRC node must print the list sorted by HOPCOUNT; do not print lines out of order

• Output (Source) Failure : [TIMEOUT] ON [HOPCOUNT]

1. A timeout is considered to have occured if a node does not reply within the ping timeout
interval specified in the config file.

• Output (Destination Success): <nothing>

• Output (Destination Failure): <nothing>

• If there is a timeout on the nth node, the rest of the nodes in that path will likely have
timeouts as well. As such, your TRACEROUTE should trace over a maximum of 10 hops.

Design

You will need to design control messages to help carry traffic. Note: even though these are
application layer messages, they are analogous to IP Layer packets. You will need to decide which
fields to include in your control messages. This should be clearly specified in your writeup; think
carefully about what fields to include. Using the correct fields will make this project substantially
easier.

8



Getting Started

Controller

In order to facilitate testing, we have given you a file controller.rb. The controller reads in a node
configuration file, and starts a node application for each node specified. The controller then allows
the user to interact with the nodes.

For simplicity, the controller runs all nodes on the same machine. Two very important notes
about the controller:

• The controller WILL NOT work in the network emulator of the CORE. That’s because the
controller can only run nodes on the same machine.

• Your code MUST work with the controller. It will not pass any of the tests unless it is
compatible with the controller.

node.rb

To get you started, we have given you some skeleton code in node.rb. You are free to use this as
a basis for starting your program, or you can start over entirely. However you decide to proceed,
you should look at this code to obtain an idea of how the code runs.

The First Steps

These steps should enable you to get a skeleton version of the nodes working.

Running a Node

1. The first step is to run a node; the starter code for the node is contained in node.rb. You
can run this code by tying ruby node.rb [HOSTNAME] [PORTNO] [NODESFILE] [CON-
FIGFILE]. HOSTNAME is the assigned name for the node; it is analogous to a DNS record.
PORTNO is the port that the node should listen for incoming connections (if you are running
all nodes on the same machine, each node must use a different port number. why?) NODES-
FILE is the file specifying which port each other node in the simulation is running on, and
CONFIGFILE is the list of options for the node. For simplicity, start the first node
ruby node.rb n1 10241 nodes config
You now have a single instance of the node running on your local machine.

2. You should now be able to interact with the node using your console input; you can give the
node commands such as SENDMSG n1 Hello, but the node will just give a message that the
method is not yet implemented.

3. You can run other nodes in the same way. After you have implemented the first part of the
project, you should be able to have two nodes start, connect to each other, and exchange
edge information.

9



Running the Controller

To simplify testing, we have given you a controller to automatically start and interact with several
instances of the nodes on the same machine.

1. The controller is started with by running ruby controller.rb [NODES] [CONFIGFILE]

2. The controller will start an instance of each node in the NODES file, pass the appropriate
NODES file name and CONFIGFILE to each of the nodes.

3. Additionally, the controller will maintain a pipe to STDIN on all of the nodes

4. Finally, the controller will redirect the output of the nodes to a text file console [nodename]

Controller Commands

To give commands to the controller type CONTROLLER and then the command
At the time of this writing, the controller supports the following commands

• SHUTDOWN - tells the controller to issue the shutdown command to all of the nodes. This
will hang if the nodes do not implement shutdown.

• SLEEP [SECONDS] - tells the controller to sleep for SECONDS seconds. This is useful if
you want to issue commands to the controller via i/o redirection. Example cat commands.txt
— ruby controller.rb nodes config

Node Commands

To give commands to a node through the controller, type NODE [nodename] and then the command

Example Commands

The following is an example of a simulation using the controller. Hint: it is the first public test

NODE n1 EDGEB 127.0.0.1 127.0.0.1 n2
NODE n1 DUMPTABLE ./t1 n1 dumptable.txt
NODE n2 DUMPTABLE ./t1 n2 dumptable.txt
CONTROLLER SLEEP 1
CONTROLLER SHUTDOWN

Files

Config File

• Each line in the config file should be formatted as option=value, where option corresponds to
one of the options below, and value is the assigned value.

• Each option, value pair should be on a separate line

• Do not include headers or any other data

10



Config File Options

Your config file must support the following options. In order for your code to work with our grading
scripts, please ensure that you name the options exactly as they appear below:

• updateInterval: Specifies (in seconds) how often routing updates should occur

• maxPayload: Specifies (in bytes) the maximum payload size for a message.

• pingTimeout: Specifies (in seconds) how long a node should wait for a reply before consid-
ering the packet to be timed out. This timeout should be used for all message types.

FAQ

The following section addresses questions I have frequently been asked in the previous years of
teaching this project.

Do I have to support fragmentation?
Yes, your implementation MUST support fragmentation

Should I Use Multithreading?
Yes, but think carefully about where to use it. It can quickly make your task much more difficult
than it needs to be.

Does ordering output matter?
The order of the output does not matter, but you cannot interleave chunks of a message. For
exmaple, it’s fine if your pings come back out of order, but you can’t have a ping message printed
out betweeen two chunks of a single SENDMSG

Can I block on the console?
No, once a command is given, the console should be ready for more input

Should I print errors to STDERR?
No, print all console messages to STDOUT

Can I use JSON?
No, you may not use JSON

What is the min / max maxPayload size?
The minimum value we will use for the maxPayload size is 32 bytes. The maximum value we will
use is 1024 bytes.

What size graph will you be testing on?
In theory, your code should work on arbitrarily large graphs. Since we have given you a controller,
you should be able to test very large graphs. I’m not going to give an official upper bound so as
not to induce design decisions that may limit the functionality of your code. There are obvious
limits to the size of the network we can run (number of available ports), but we will not test on

11



anything near that size.

How long will we give your code to converge?
EDGEB and EDGEU should be able to complete in less than a second, but we will give two sec-
onds. For updating the cost of the network, you will have the update interval times the diameter
of the network + delta. Exmaple:

updateInterval × networkDiameter + ∆

Delta will be a few extra seconds (usually one or two).

Technical Specifications

The following are a collection of technical nuances particular to this version of the project

• You will need to explicitly refer to ruby’s STDIN and STDOUT and STDERR when printing
and reading. For example: STDIN.gets() STDOUT.puts

• Node names will not contain spaces

• The node should bind to all interfaces

• The Ruby version you should use will be announced on Piazza

12


