Quiz 4
CMSC 421: Introduction to Artificial Intelligence

Instructions:
You may use blank space anywhere (front or back) for scratch work if necessary, but your final answer must be clearly circled under the corresponding problem.

Time Limit: 15 minutes

DID (e.g., jdoe123): ____________________________

Date: __

Honor Pledge:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination.

Signature: ____________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

1. (1 point) In the context of SGD training of feed-forward neural networks—where each processing pass finds Cost C and then its weight-gradient for a mini-batch (e.g., by backprop)—what is an epoch?
 A. One processing pass through all the examples in a mini-batch
 B. One processing pass through all the examples in the training set
 C. The reduction of Cost by $\frac{1}{2}$ of the initial Cost, or by $\frac{1}{2}$ of the Cost at the end of the previous epoch
 D. None of the above

2. (1 point) The gradient descent algorithm will always narrow in on a local minimum of the Cost function, for all values of alpha (or learning rate, step size).
 A. True B. False

3. (1 point) The Hadamard product of vectors (a, b, c) and (d, e, f) is
 A. equal to the dot product
 B. (abc, def)
 C. (ad, be, cf)
 D. $(2ad, 2be, 2cf)$
 E. None of the above

4. (1 point) Given a dataset of size N, what is the minimum size of a mini-batch?
 A. \sqrt{N} B. $\lfloor N/2 \rfloor$ C. 100 D. 1

5. (6 points) Below is a feedforward neural network. There are NO BIAS UNITS. The i-th unit in layer l is labeled U^l_i. As you can see below, the NN receives inputs $x_1, x_2,$ and $x_3,$ and computes two outputs, a_1 and a_2, which are the activations of U^1_1 and U^1_2, respectively. Activations of U^0_i are x_i, and the activation function for U^1_i is ReLU. The weights are contained in a 3×2 matrix W, where W_{ij} is the weight of the connection from U^0_i to U^1_j.

Explain why this neural network cannot learn to output (y_1, y_2) for input $(0, 0, 0)$ if $(y_1, y_2) \neq (0, 0)$.