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What is this course about?

» Machine learning studies algorithms for
learning to do stuff

By finding (and exploiting) patterns in
data



What can we do

with machine learning?
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Sometimes machines even
perform better than humans!
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Machine Learning

« Paradigm: "Programming by example”

— Replace "human writing code" with "human
supplying data"

* Most central issue: generalization

— How to abstract from training" examples to "test"
examples?



A growing and fast moving field

* Broad applicability

— Finance, robotics, vision, machine translation,
medicine, etc.

 Close connection between theory and
practice

* Open field, lots of room for new work!



Course Goals

« By the end of the semester, you should be able to
— Look at a problem
— Identify if ML is an appropriate solution

— If so, identify what types of algorithms might be
applicable

— Apply those algorithms

 This course is not
— A survey of ML algorithms
— A tutorial on ML toolkits such as Weka, TensorFlow, ...



lopics

Foundations of Supervised Learning

*Decision trees and inductive bias

*Geometry and nearest neighbors

*Perceptron

*Practical concerns: feature design, evaluation, debugging
*Beyond binary classification

Advanced Supervised Learning

Linear models and gradient descent

*Support Vector Machines

*Naive Bayes models and probabilistic modeling
*Neural networks

*Kernels

*Ensemble learning

Unsupervised learning
*K-means

PCA

*Expectation maximization



What you can expect
from the instructors

Teaching Assistant: We are here to help you learn by

— Introducing concepts from multiple
perspectives
« Theory and practice
« Readings and class time

— Providing opportunities to practice,
and feedback to help you stay on
track

 Homeworks
* Programming assignments

Xing Niu




What | expect from you

 Work hard (this is a 3-credit class!)

— Do a lot of math (calculus, linear algebra, probability)
— Do a fair amount of programming

« Come to class prepared
— Do the required readings!



Highlights from course logistics

Grading

e Homeworks (20%), ~10,
almost weekly

* Programming projects
(30%), 3 of them, in teams
of two or three students

e Midterm exam (20%), in
class

 Final exam (30%),
cumulative, in class.

e HWO1 is due Thu
10:59am

* No late homeworks

« Read syllabus here:

http://www.cs.umd.edu/
class/spring2017/cmsc4

22//syllabus/



http://www.cs.umd.edu/class/spring2016/cmsc422/syllabus/

Where to...

find the readings: A Course in Machine
Learning

view and submit assignments: Canvas
check your grades: Canvas

ask and answer questions, participate in
discussions and surveys, contact the
instructors, and everything else: Piazza
Please use piazza instead of emall



http://ciml.info/
https://myelms.umd.edu/
https://myelms.umd.edu/

Today'’s topics

What does it mean to “learn by example"?
 Classification tasks
* Inductive bias

* Formalizing learning



Classification tasks

« How would you write a program to
distinguish a picture of me from a picture

of someone else?

* Provide examples pictures of me and
pictures of other people and let a
classifier learn to distinguish the two.



Classification tasks

« How would you write a program to
distinguish a sentence is grammatical or

not?

* Provide examples of grammatical and
ungrammatical sentences and let a
classifier learn to distinguish the two.



Classification tasks

« How would you write a program to
distinguish cancerous cells from normal
cells?

* Provide examples of cancerous and normal
cells and let a classifier learn to
distinguish the two.



Classification tasks

« How would you write a program to
distinguish cancerous cells from normal
cells?

* Provide examples of cancerous and normal
cells and let a classifier learn to
distinguish the two.



Let's try it out...

= Your task: learn a classifier to distinguish
class A from class B from examples



« Examples of class A:




» Examples of class B




Let's try it out...

v' learn a classifier from examples

= Now: predict class on new examples using
what you've learned
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Key ingredients

needed for lear

 Training vs. test examples

pliale

— Memorizing the training examples is not enough!
— Need to generalize to make good predictions on test

examples

* |Inductive bias

— Many classifier hypotheses are plausible

— Need assumptions about the nature of the relation

between examples and classes



Machine Learning
as Function Approximation

Problem setting

« Set of possible instances X

« Unknown target function f: X - Y

 Set of function hypotheses H ={h | h: X - Y}

Input

- Training examples {(xY,yW), . (x™M),yM)} of unknown
target function f

Output
« Hypothesis h € H that best approximates target function f



Formalizing induction:
LOSs Function

L(y, f(x)) where y is the truth and f(x) is the
system’s prediction

e.g. 1y, f(x)) = {0 Jy =7

1 otherwise

Captures our notion of what is important to learn



Formalizing induction:
Data generating distribution

« Where does the data come from?

— Data generating distribution
A probability distribution D over (x,y) pairs

— We don’'t know what D is!

* We only get a random sample from it: our training
data



Formalizing induction:
Expected loss

 f should make good predictions
— as measured by loss [
— on future examples that are also drawn from D

« Formally

— ¢, the expected loss of f over D with respect to [ should
be small

£ 2 Byl fON} = ) DCo I, f(x))

(x,y)
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* We can’t compute expected loss because we
don't know what D is

* We only have a sample of D
— training examples {(xV,y), .. (xM),y M)}

 All we can compute is the training error

N
1
g2 Y U™, Fx™))
n=1



Formalizing Induction

* Glven
— a loss function [
— a sample from some unknown data distribution D

» QOur task is to compute a function f that has
low expected error over D with respect to L.

Eaeyy-oll fC)} = ) DI, f())

(x,y)



Recap: Introaucing

machine lea

What does “learning by examp

* Classification tasks

"niNg

e”" mean?

« Learning requires examples + inductive bias
* Generalization vs. memorization

* Formalizing the learning problem

— Function approximation

— Learning as minimizing expected loss



Your tasks before next class

* Check out course webpage, Canvas, Piazza
» Start reading
* Get started on HWO1

» Let me know dates of religious holidays
you observe this semester

* Let me know if you will need DSS
arrangements



