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What is this course about?

• Machine learning studies algorithms for 

learning to do stuff

• By finding (and exploiting) patterns in 

data



What can we do 

with machine learning?

Analyze genomics data

Recognize objects

in images

Analyze text & speech

Teach robots how to 

cook from youtube

videos



Question Answering 

system beats Jeopardy 

champion Ken Jennings at 

Quiz bowl!

Sometimes machines even 

perform better than humans!



Machine Learning 

• Paradigm: “Programming by example”

– Replace ``human writing code'' with ``human 

supplying data''

• Most central issue: generalization

– How to abstract from ``training'' examples to ``test'' 

examples?



A growing and fast moving field

• Broad applicability

– Finance, robotics, vision, machine translation, 

medicine, etc.

• Close connection between theory and 

practice

• Open field, lots of room for new work!



Course Goals

• By the end of the semester, you should be able to

– Look at a problem

– Identify if ML is an appropriate solution

– If so, identify what types of algorithms might be 

applicable

– Apply those algorithms

• This course is not

– A survey of ML algorithms

– A tutorial on ML toolkits such as Weka, TensorFlow, …



Topics
Foundations of Supervised Learning

•Decision trees and inductive bias 

•Geometry and nearest neighbors 

•Perceptron 

•Practical concerns: feature design, evaluation, debugging 

•Beyond binary classification 

Advanced Supervised Learning

•Linear models and gradient descent 

•Support Vector Machines 

•Naive Bayes models and probabilistic modeling 

•Neural networks 

•Kernels 

•Ensemble learning 

Unsupervised learning

•K-means 

•PCA 

•Expectation maximization



What you can expect

from the instructors

We are here to help you learn by

– Introducing concepts from multiple 

perspectives

• Theory and practice

• Readings and class time

– Providing opportunities to practice, 

and feedback to help you stay on 

track

• Homeworks

• Programming assignments

Teaching Assistant:

Xing Niu 



What I expect from you

• Work hard (this is a 3-credit class!)

– Do a lot of math (calculus, linear algebra, probability)

– Do a fair amount of programming

• Come to class prepared

– Do the required readings!



Highlights from course logistics

Grading

• Homeworks (20%), ~10, 

almost weekly

• Programming projects 

(30%), 3 of them, in teams 

of two or three students

• Midterm exam (20%), in 

class

• Final exam (30%), 

cumulative, in class.

• HW01 is due Thu 

10:59am

• No late homeworks

• Read syllabus here:

http://www.cs.umd.edu/

class/spring2017/cmsc4

22//syllabus/

http://www.cs.umd.edu/class/spring2016/cmsc422/syllabus/


Where to…

• find the readings: A Course in Machine 

Learning

• view and submit assignments: Canvas

• check your grades: Canvas

• ask and answer questions, participate in 

discussions and surveys, contact the 

instructors, and everything else: Piazza 

Please use piazza instead of email

http://ciml.info/
https://myelms.umd.edu/
https://myelms.umd.edu/


Today’s topics

What does it mean to “learn by example”?

• Classification tasks

• Inductive bias

• Formalizing learning



Classification tasks

• How would you write a program to 

distinguish a picture of me from a picture

of someone else?

• Provide examples pictures of me and 

pictures of other people and let a 

classifier learn to distinguish the two.



Classification tasks

• How would you write a program to 

distinguish a sentence is grammatical or 

not?

• Provide examples of grammatical and 

ungrammatical sentences and let a 

classifier learn to distinguish the two.



Classification tasks

• How would you write a program to 

distinguish cancerous cells from normal 

cells?

• Provide examples of cancerous and normal 

cells and let a classifier learn to 

distinguish the two.



Classification tasks

• How would you write a program to 

distinguish cancerous cells from normal 

cells?

• Provide examples of cancerous and normal 

cells and let a classifier learn to 

distinguish the two.



Let’s try it out…

 Your task: learn a classifier to distinguish 

class A from class B from examples



• Examples of class A:



• Examples of class B



Let’s try it out…

 learn a classifier from examples

 Now: predict class on new examples using 

what you’ve learned















What if I told you…



Key ingredients 

needed for learning

• Training vs. test examples

– Memorizing the training examples is not enough!

– Need to generalize to make good predictions on test 

examples

• Inductive bias

– Many classifier hypotheses are plausible

– Need assumptions about the nature of the relation 

between examples and classes



Machine Learning 

as Function Approximation

Problem setting

• Set of possible instances 𝑋

• Unknown target function 𝑓: 𝑋 → 𝑌

• Set of function hypotheses 𝐻 = ℎ ℎ: 𝑋 → 𝑌}

Input

• Training examples { 𝑥 1 , 𝑦 1 , … 𝑥 𝑁 , 𝑦 𝑁 } of unknown 

target function 𝑓

Output

• Hypothesis ℎ ∈ 𝐻 that best approximates target function 𝑓



Formalizing induction:

Loss Function

𝑙(𝑦, 𝑓(𝑥)) where 𝑦 is the truth and 𝑓 𝑥 is the 

system’s prediction

e.g. 𝑙 𝑦, 𝑓(𝑥) =  
0 𝑖𝑓 𝑦 = 𝑓(𝑥)
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Captures our notion of what is important to learn



Formalizing induction:

Data generating distribution

• Where does the data come from?

– Data generating distribution

• A probability distribution 𝐷 over (𝑥, 𝑦) pairs

– We don’t know what 𝐷 is!

• We only get a random sample from it: our training 

data



Formalizing induction:

Expected loss

• 𝑓 should make good predictions

– as measured by loss 𝑙

– on future examples that are also drawn from 𝐷

• Formally

– 𝜀 , the expected loss of 𝑓 over 𝐷 with respect to 𝑙 should 

be small

𝜀 ≜ 𝔼 𝑥,𝑦 ~𝐷 𝑙(𝑦, 𝑓(𝑥)) =  

(𝑥,𝑦)

𝐷 𝑥, 𝑦 𝑙(𝑦, 𝑓(𝑥))



Formalizing induction:

Training error

• We can’t compute expected loss because we 

don’t know what 𝐷 is

• We only have a sample of 𝐷

– training examples { 𝑥 1 , 𝑦 1 , … 𝑥 𝑁 , 𝑦 𝑁 }

• All we can compute is the training error

 𝜀 ≜  

𝑛=1

𝑁
1

𝑁
𝑙(𝑦 𝑛 , 𝑓(𝑥 𝑛 ))



Formalizing Induction

• Given

– a loss function 𝑙

– a sample from some unknown data distribution 𝐷

• Our task is to compute a function f that has 

low expected error over 𝐷 with respect to 𝑙.

𝔼 𝑥,𝑦 ~𝐷 𝑙(𝑦, 𝑓(𝑥)) =  

(𝑥,𝑦)

𝐷 𝑥, 𝑦 𝑙(𝑦, 𝑓(𝑥))



Recap: introducing 

machine learning
What does “learning by example” mean?

• Classification tasks

• Learning requires examples + inductive bias

• Generalization vs. memorization

• Formalizing the learning problem

– Function approximation

– Learning as minimizing expected loss



Your tasks before next class

• Check out course webpage, Canvas, Piazza

• Start reading

• Get started on HW01

• Let me know dates of religious holidays 

you observe this semester

• Let me know if you will need DSS 

arrangements 


