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L ast week: INtroo

ucing

machine learr

What does “learning by example”

* Classification tasks

Jale

mean?

« Learning requires examples + inductive bias

— Generalization vs. memorization

* Formalizing the learning problem

— Function approximation

— Learning as minimizing expected lossOpoo



Machine Learning
as Function Approximation

Problem setting

« Set of possible instances X

« Unknown target function f: X - Y

 Set of function hypotheses H ={h | h: X - Y}

Input

- Training examples {(xY,yW), . (x™M),yM)} of unknown
target function f

Output
« Hypothesis h € H that best approximates target function f



Today: Decision Trees

What is a decision tree?
How to learn a decision tree from data?
What is the inductive bias?

Generalization?



An example training set

Day Outlook Temperature Humidity Wind PlayTennis?

D1  Sunny Hot High Weak No
D2  Sunny Hot High  Strong No
D3 Overcast Hot High  Weak Yes
D4  Rain Mild High  Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High  Weak No
D9  Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High  Strong No




A decision tree
to decide whether to play tennis

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High N, [ Strong Weak
No Y, No Y,



Decision [rees

* Representation
— Each internal node tests a feature
— Each branch corresponds to a feature value

— Each leaf node assigns a classification
* or a probability distribution over classifications

 Decision trees represent functions that map
examples in X to classes in'Y

f: <Outlook, Temperature, Humidity, Wind> = PlayTennis?



Exercise

« How would you represent the following
Boolean functions with decision trees?

— AND

— OR

— XOR

—(ANB)U (CnN-=D)



Today: Decision Trees

What is a decision tree?
How to learn a decision tree from data?
What is the inductive bias?

Generalization?



Function Approximation
with Decision Irees

Problem setting

« Set of possible instances X
— Each instance x € X is a feature vector x = [xq, ..., xp]

« Unknown target function f: X - Y
— Y is discrete valued

 Set of function hypotheses H ={h | h: X - Y}
— Each hypothesis h is a decision tree

Input

» Training examples {(xY,y W), . (x™, ™))} of unknown
target function f

Output

« Hypothesis h € H that best approximates target function f



Decision Irees Learning

* Finding the hypothesis h € H
— That minimizes training error
— Or maximizes training accuracy

* How?
— H is too large for exhaustive search!

— We will use a heuristic search algorithm which
* Picks questions to ask, in order
 Such that classification accuracy is maximized



Top-down Induction
of Decision Trees

CurrentNode = Root

DTtrain(examples for CurrentNode,features at CurrentNode):

1.
2. For each value of F, create new descendant of node
3.

4. If training examples perfectly classified

Find F, the “best” decision feature for next node

Sort training examples to leaf nodes

Stop

Else

Recursively apply DTtrain over new leaf nodes



How to select the "best” feature?

» A good feature is a feature that lets us
make correct classification decision

* One way to do this:

— select features based on their classification
accuracy

» Let's try it on the PlayTennis dataset



Let’s build a decision tree
using features W, H, T

Day Outlook Temperature Humidity Wind PlayTennis?

D1  Sunny Hot High Weak No
D2  Sunny Hot High  Strong No
D3 Overcast Hot High Weak Yes
D4  Rain Mild High Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High  Weak No
D9  Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High  Strong No




Partitioning examp

es according

to Humidity

‘eature

Day Outlook Temperature Humidity Wind PlayTennis?

Sunny
Rain

D12 Overcast

Noral
Normal

NOTm

High

D1 Sunny Hot High  Weak No
D2  Sunny Hot High  Strong No
D3 Overcast Hot High  Weak Yes

\J4 Rain Mild High Weak Yeg
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No

/VEeaKk
Weak
Weak

Mild Strong  Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High  Strong No




Partitioning examples:
H = Normal

Day Outlook Temperature Humidity Wind PlayTennis?

D1  Sunny Hot High  Weak No

D2  Sunny Hot High  Strong No

D3 Overcast Hot High Weak Yes

D4  Rain Mild High Weak Yes

[ D5 Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 __Overcast Cool Normal Strong Yes

D8  Sunny Mild High Weak No

[ D9  Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 __Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes

| | D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High  Strong No




H =

Pa

rtitioning examples:
Normal and W = Strong

Day Outlook Temperature Humidity Wind PlayTennis?

D1  Sunny Hot High  Weak No

D2  Sunny Hot High  Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

: D5 Rain Coaol Normal  Weak Yes
D6  Rain Cool Normal Strong No

| D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High Weak No

"' D9  Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 _Sunny Mild Normal _Strong Yes
D12 Overcast Mild High  Strong Yes

| | D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High  Strong No




Another featL
criterion:

e se

-Ntro

ection

Oy

* Used in the ID3 algorithm [Quinlan, 1963]

— pick feature with smallest entropy to split the
examples at current iteration

» Entropy measures impurity of a sample of

examples




Sample Entropy

10T

Entropy(S)
=)
w

0.0 0.5 1.0

e S is a sample of training examples
® p., is the proportion of positive examples in S
e p- is the proportion of negative examples in S

e Entropy measures the impurity of S

H(S) = —ps logy pe — pe logy pe



Entropy # of possible

Entropy H(X) of a random W el o

n+—_
H(X)=-) P(X =1)logy P(X =1)
1=1

H(X) is the expected number of bits needed to encode a
randomly drawn value of X (under most efficient code)

Why? Information theory:

» Most efficient possible code assigns -log, P(X=i) bits
to encode the message X=i

* So, expected number of bits to code one random X is:

n

Y P(X =1)(—logp P(X = 1))
i=1



A decision tree to predict

C-sections

T

[833+,167-] .83+ .17-
Fetal Presentation = 1: [822+,116-] .88+ .12-
Previous Csection = 0: [767+,81-] .90+ .10-
Primiparous = 0: [399+,13-] .97+ .03-
Primiparous = 1: [368+,68-] .84+ .16-
Fetal Distress = 0: [334+,47-] .88+ .12-
| Birth Weight < 3349: [201+,10.6-] .95+ .05-
| Birth Weight >= 3349: [133+,36.4-] .78+ .22-
Fetal Distress = 1: [34+,21-] .62+ .38-
Previous Csection = 1: [55+,35-] .61+ .39-
Fetal Presentation = 2: [3+,29-] .11+ .89-

3: [8+,22-] .27+ .73-

<
>

Fetal Presentation =



A decision tree to distinguish homes in
New York from homes in San Francisco

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/



http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Today: Decision Trees

What is a decision tree?
How to learn a decision tree from data?

What is the inductive bias?

Generalization?



Inductive bias
in decision tree learning

CurrentNode = Root

DTtrain(examples for CurrentNode,features at CurrentNode):

1.
2. For each value of F, create new descendant of node
3.

4. If training examples perfectly classified

Find F, the “best” decision feature for next node

Sort training examples to leaf nodes

Stop

Else

Recursively apply DTtrain over new leaf nodes



Inductive bias in
decision tree learning

* Qur learning algorithm
/'?(D\ performs heuristic search

/ N l \ through space of decision trees
/l{\i{m * It stops at smallest acceptable
ﬁ?ﬁ AN tree

. * Occam'’s razor: prefer
= the simplest hypothesis

\ that fits the data



Why prefer short hypotheses?

* Pros

— Fewer short hypotheses than long ones

* A short hypothesis that fits the data is less likely to
be a statistical coincidence

* Cons
— What's so special about short hypotheses?



