K-Means an example of unsupervised learning

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu

Exercise: When are DT vs kNN appropriate?

Properties of classification problem	Can Decision Trees handle them?	Can K-NN handle them?
Binary features	yes	yes
Numeric features	yes	yes
Categorical features	yes	yes
Robust to noisy training examples	no (for default algorithm)	yes (when k > 1)
Fast classification is crucial	yes	no
Many irrelevant features	yes	no
Relevant features have very different scale	yes	no

Today's Topics

- A new algorithm
 - K-Means Clustering

- Fundamental Machine Learning Concepts
 - Unsupervised vs. supervised learning
 - Decision boundary

Clustering

Goal: automatically partition examples into groups of similar examples

- Why? It is useful for
 - Automatically organizing data
 - Understanding hidden structure in data
 - Preprocessing for further analysis

What can we cluster in practice?

- news articles or web pages by topic
- protein sequences by function, or genes according to expression profile
- users of social networks by interest
- customers according to purchase history

•

Clustering

- Input
 - a set S of n points in feature space
 - a distance measure specifying distance d(x_i,x_j) between pairs (x_i,x_j)

- Output
 - A partition {S_1,S_2, ... S_k} of S

Supervised Machine Learning as Function Approximation

Problem setting

- Set of possible instances X
- Unknown target function $f: X \to Y$
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

• Training examples $\{(x^{(1)}, y^{(1)}), ... (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Supervised vs. unsupervised learning

- Clustering is an example of unsupervised learning
- We are not given examples of classes y
- Instead we have to discover classes in data

2 datasets with very different underlying structure!

The K-Means Algorithm

Training Data

K: number of clusters to discover

Algorithm 4 K-MEANS(D, K)

```
<sub>1:</sub> for k = 1 to K do
      \mu_k \leftarrow some random location // randomly initialize mean for kth cluster
   end for
4: repeat
       for n = \tau to N do
          z_n \leftarrow \operatorname{argmin}_k || \mu_k - x_n ||
                                                             // assign example n to closest center
6:
       end for
       for k = 1 to K do
          \mathbf{X}_k \leftarrow \{ \mathbf{x}_n : \mathbf{z}_n = k \}
                                                                      // points assigned to cluster k
          \mu_k \leftarrow \text{MEAN}(\mathbf{X}_k)
                                                                     // re-estimate mean of cluster k
10:
       end for
   until µs stop changing
```

13: return z

// return cluster assignments

Example: using K-Means to discover 2 clusters in data

Example: using K-Means to discover 2 clusters in data

K-Means properties

- Time complexity: O(KNL) where
 - K is the number of clusters
 - N is number of examples
 - L is the number of iterations
- K is a hyperparameter
 - Needs to be set in advance (or learned on dev set)
- Different initializations yield different results!
 - Doesn't necessarily converge to best partition
- "Global" view of data: revisits all examples at every iteration

Impact of initialization

Impact of initialization

Questions for you...

 Are there clusters that cannot be discovered using k-means?

 Do you know any other clustering algorithms?

Aside: Curse of dimensionality

- Challenges of working with high dimensional spaces
 - Hard to visualize
 - Computational cost
 - Many of our intuitions about 2D or 3D spaces don't hold
 - High dimensional hyperspheres "look more like porcupines than balls"
 - Distances between two random points in high dimensions are approximately the same

(CIML Section 3.5 + HW #3)

What you should know

- New Algorithms
 - K-NN classification
 - K-means clustering
- Fundamental ML concepts
 - How to draw decision boundaries
 - What decision boundaries tells us about the underlying classifiers
 - The difference between supervised and unsupervised learning