K-Means
an example of
unsupervised learning
Exercise: When are DT vs kNN appropriate?

<table>
<thead>
<tr>
<th>Properties of classification problem</th>
<th>Can Decision Trees handle them?</th>
<th>Can K-NN handle them?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary features</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Numeric features</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Categorical features</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Robust to noisy training examples</td>
<td>no (for default algorithm)</td>
<td>yes (when k > 1)</td>
</tr>
<tr>
<td>Fast classification is crucial</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Many irrelevant features</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Relevant features have very different scale</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Today’s Topics

• A new algorithm
 – K-Means Clustering

• Fundamental Machine Learning Concepts
 – Unsupervised vs. supervised learning
 – Decision boundary
Clustering

• Goal: automatically partition examples into groups of similar examples

• Why? It is useful for
 – Automatically organizing data
 – Understanding hidden structure in data
 – Preprocessing for further analysis
What can we cluster in practice?

- news articles or web pages by topic
- protein sequences by function, or genes according to expression profile
- users of social networks by interest
- customers according to purchase history
- ...
Clustering

• Input
 – a set S of n points in feature space
 – a distance measure specifying distance $d(x_i, x_j)$ between pairs (x_i, x_j)

• Output
 – A partition $\{S_1, S_2, \ldots, S_k\}$ of S
Supervised Machine Learning as Function Approximation

Problem setting
• Set of possible instances X
• Unknown target function $f: X \rightarrow Y$
• Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input
• Training examples $\{(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output
• Hypothesis $h \in H$ that best approximates target function f
Supervised vs. unsupervised learning

- Clustering is an example of unsupervised learning
- We are not given examples of classes y
- Instead we have to discover classes in data
2 datasets with very different underlying structure!
The K-Means Algorithm

Algorithm 4 K-Means(D, K)

1: for $k = 1$ to K do
2: $\mu_k \leftarrow$ some random location // randomly initialize mean for kth cluster
3: end for

repeat

4: for $n = 1$ to N do
5: $z_n \leftarrow \arg\min_k ||\mu_k - x_n||$ // assign example n to closest center
6: end for

7: for $k = 1$ to K do
8: $X_k \leftarrow \{ x_n : z_n = k \}$ // points assigned to cluster k
9: $\mu_k \leftarrow \text{MEAN}(X_k)$ // re-estimate mean of cluster k
10: end for
11: until μs stop changing

12: return z // return cluster assignments
Example: using K-Means to discover 2 clusters in data
Example: using K-Means to discover 2 clusters in data
K-Means properties

• Time complexity: $O(KNL)$ where
 – K is the number of clusters
 – N is number of examples
 – L is the number of iterations

• K is a hyperparameter
 – Needs to be set in advance (or learned on dev set)

• Different initializations yield different results!
 – Doesn’t necessarily converge to best partition

• “Global” view of data: revisits all examples at every iteration
Impact of initialization
Impact of initialization
Questions for you...

• Are there clusters that cannot be discovered using k-means?

• Do you know any other clustering algorithms?
Aside: Curse of dimensionality

- Challenges of working with high dimensional spaces
 - Hard to visualize
 - Computational cost
 - Many of our intuitions about 2D or 3D spaces don’t hold
 - High dimensional hyperspheres “look more like porcupines than balls”
 - Distances between two random points in high dimensions are approximately the same

(CIML Section 3.5 + HW #3)
What you should know

• New Algorithms
 – K-NN classification
 – K-means clustering

• Fundamental ML concepts
 – How to draw decision boundaries
 – What decision boundaries tells us about the underlying classifiers
 – The difference between supervised and unsupervised learning