The Perceptron

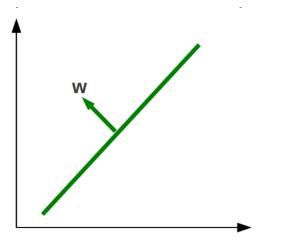
CMSC 422 MARINE CARPUAT marine@cs.umd.edu

Credit: figures by Piyush Rai and Hal Daume III

This week

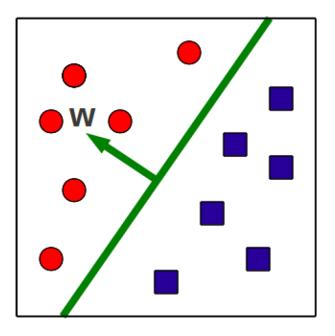
- A new model/algorithm
 - the perceptron
 - and its variants: voted, averaged
- Fundamental Machine Learning Concepts
 - Online vs. batch learning
 - Error-driven learning
- Project 1 coming soon!

Geometry concept: Hyperplane



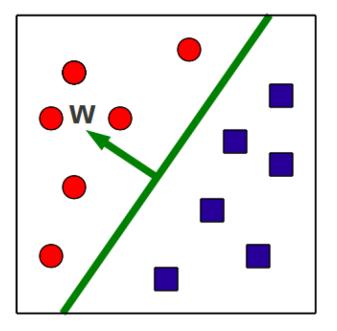
- Separates a D-dimensional space into two half-spaces
- Defined by an outward pointing normal vector $w \in \mathbb{R}^{D}$
 - *w* is **orthogonal** to any vector lying on the hyperplane
- Hyperplane passes through the origin, unless we also define a **bias** term b

Binary classification via hyperplanes



- Let's assume that the decision boundary is a hyperplane
- Then, training consists in finding a hyperplane *w* that separates positive from negative examples

Binary classification via hyperplanes



 At test time, we check on what side of the hyperplane examples fall

$$\hat{y} = sign(w^T x + b)$$

Function Approximation with Perceptron

Problem setting

• Set of possible instances X

- Each instance $x \in X$ is a feature vector $x = [x_1, ..., x_D]$

• Unknown target function $f: X \rightarrow Y$

- Y is binary valued $\{-1; +1\}$

- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis h is a hyperplane in D-dimensional space

Input

• Training examples $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

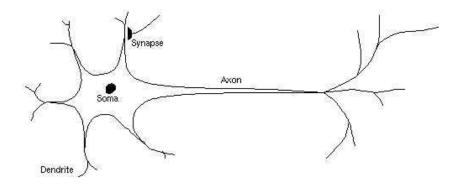
Perception: Prediction Algorithm

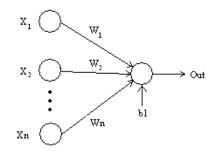
Algorithm 6 PERCEPTRONTEST $(w_0, w_1, \ldots, w_D, b, \hat{x})$

 $a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b$ 2: return sign(a)

// compute activation for the test example

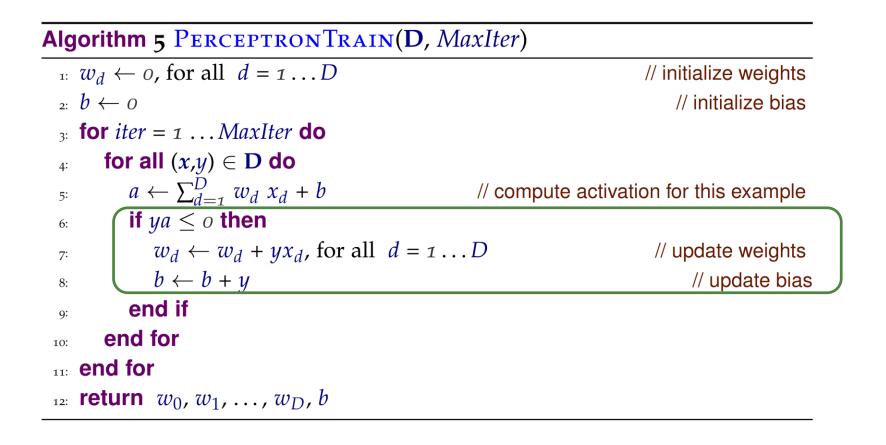
Aside: biological inspiration



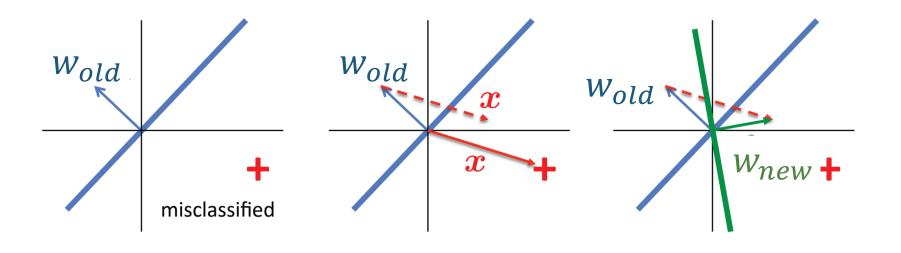


Analogy: the perceptron as a neuron

Perceptron Training Algorithm



Perceptron update: geometric interpretation



Properties of the Perceptron training algorithm

Online

- We look at one example at a time, and update the model as soon as we make an error

- As opposed to batch algorithms that update parameters after seeing the entire training set
- Error-driven
 - We only update parameters/model if we make an error

Practical considerations

- The order of training examples matters!
 Random is better
- Early stopping
 - Good strategy to avoid overfitting
- Simple modifications dramatically improve performance
 - voting or averaging