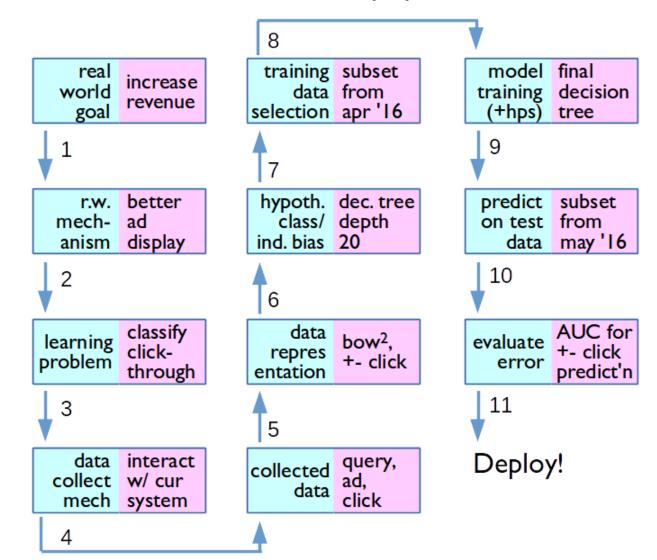
Imbalanced Data and Reductions

CMSC 422 MARINE CARPUAT <u>marine@cs.umd.edu</u>

Typical Design Process for an ML Application



Imbalanced data distributions

- Sometimes training examples are drawn from an imbalanced distribution
- This results in an imbalanced training set – "needle in a haystack" problems
 - E.g., find fraudulent transactions in credit card histories
- Why is this a big problem for the ML algorithms we know?

Recall: Machine Learning as Function Approximation

Problem setting

- Set of possible instances X
- Unknown target function $f: X \rightarrow Y$
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

• Training examples { $(x^{(1)}, y^{(1)}), ... (x^{(N)}, y^{(N)})$ } of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Recall: Loss Function

l(y, f(x)) where y is the truth and f(x) is the system's prediction

e.g.
$$l(y, f(x)) = \begin{cases} 0 & if \ y = f(x) \\ 1 & otherwise \end{cases}$$

Captures our notion of what is important to learn

Recall: Expected loss

- *f* should make good predictions
 - as measured by loss l
 - on **future** examples that are also drawn from *D*
- Formally
 - ε , the expected loss of f over D with respect to l should be small

$$\varepsilon \triangleq \mathbb{E}_{(x,y)\sim D}\{l(y,f(x))\} = \sum_{(x,y)} D(x,y)l(y,f(x))$$

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

TASK: α -WEIGHTED BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\alpha^{y=1}[f(x)\neq y]\right]$

Given a good algorithm for solving the binary classification problem, Weok icarpst of solve the α -weighted binary classification: problem?

Solution: Train a binary classifier on an induced distribution

Algorithm 11 SUBSAMPLEMAP($\mathcal{D}^{weighted}, \alpha$)

- 1: while true do
- 2: $(x, y) \sim \mathcal{D}^{weighted}$ // draw an example from the weighted distribution
- $u \sim uniform random variable in [0, 1]$
- 4: if y = +1 or $u < \frac{1}{\alpha}$ then
- 5: return (x, y)
- 6: end if
- 7: end while

Subsampling optimality

Theorem: If the binary classifier achieves a binary error rate of ε, then the error rate of the α-weighted classifier is α ε

• Let's prove it. (see also CIML 6.1) Strategies for inducing a new binary distribution

• Undersample the negative class

• Oversample the positive class

Strategies for inducing a new binary distribution

- Undersample the negative class
 More computationally efficient
- Oversample the positive class
 - Base binary classifier might do better with more training examples
 - Efficient implementations incorporate weight in algorithm, instead of explicitly duplicating data!

Algorithm 1 DECISIONTREETRAIN(*data, remaining features*)

1: guess ←	- most frequent answer in <i>data</i>	// default answer for this data	
^{2:} if the labels in <i>data</i> are unambiguous then			
3: retur	'n Leaf(guess)	// base case: no need to split further	
4: else if <i>remaining features</i> is empty then			
5: retur	'n Leaf(guess)	<pre>// base case: cannot split further</pre>	
6: else		// we need to query more features	
<i>₇:</i> for all $f \in remaining features do$			
8: N C	$NO \leftarrow$ the subset of <i>data</i> on which <i>f</i> = <i>no</i>		
9: YE	$YES \leftarrow$ the subset of <i>data</i> on which <i>f</i> =yes		
10: SCC	score[f] \leftarrow # of majority vote answers in NO		
11:	+ # of majority vote answers in YES		
// the accuracy we would get if we only queried on f			
12: end for			
13: $f \leftarrow$	$f \leftarrow \text{the feature with maximal } score(f)$		
14: NO <	$NO \leftarrow$ the subset of <i>data</i> on which <i>f</i> = <i>no</i>		
15: YES	$YES \leftarrow$ the subset of <i>data</i> on which <i>f</i> =yes		
16: $left \leftarrow$	$e ft \leftarrow DecisionTreeTrain(NO, remaining features \setminus \{f\})$		
17: right	$right \leftarrow DecisionTreeTrain(YES, remaining features \setminus {f})$		
18: return Node(f, left, right)			
19: end if			

Reductions

- Idea is to re-use simple and efficient algorithms for binary classification to perform more complex tasks
- Works great in practice:

– E.g., <u>Vowpal Wabbit</u>

Learning with Imbalanced Data is an Example of Reduction

TASK: α -Weighted Binary Classification

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\alpha^{y=1}[f(x)\neq y]\right]$

Subsampling Optimality Theorem:

If the binary classifier achieves a binary error rate of ϵ , then the error rate of the α -weighted classifier is $\alpha \epsilon$

Multiclass classification

- Real world problems often have multiple classes (text, speech, image, biological sequences...)
- How can we perform multiclass classification?
 - Straightforward with decision trees or KNN
 - Can we use the perceptron algorithm?

Reductions for Multiclass Classification

TASK: MULTICLASS CLASSIFICATION

Given:

- 1. An input space X and number of classes K
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times [K]$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x) \neq y]$

How many classes can we handle in practice?

• In most tasks, number of classes K < 100

- For much larger K
 - we need to frame the problem differently
 - e.g, machine translation or automatic speech recognition

What you should know

- How can we take the standard binary classifier and adapt it to handle problems with
 - Imbalanced data distributions
 - Multiclass classification problems
- Algorithms & guarantees on error rate
- Fundamental ML concept: reduction

Reduction 1: OVA

- "One versus all" (aka "one versus rest")
 - Train K-many binary classifiers
 - classifier k predicts whether an example belong to class k or not
 - At test time,
 - If only one classifier predicts positive, predict that class
 - Break ties randomly

Algorithm 12 ONEVERSUSALLTRAIN(D^{multiclass}, BINARYTRAIN)

- 1: for i = 1 to K do
- 2: $\mathbf{D}^{bin} \leftarrow \text{relabel } \mathbf{D}^{multiclass} \text{ so class } i \text{ is positive and } \neg i \text{ is negative}$
- $f_i \leftarrow \text{BINARYTRAIN}(\mathbf{D}^{bin})$
- 4: end for
- 5: **return** f_1, \ldots, f_K

Algorithm 13 ONEVERSUSALLTEST $(f_1, \ldots, f_K, \hat{x})$

- 1: Score $\leftarrow \langle 0, 0, \dots, 0 \rangle$
- 2: for i = 1 to K do
- $y \leftarrow f_i(\hat{x})$
- $_{4:} \quad score_i \leftarrow score_i + y$
- 5: end for
- 6: return argmax_k score_k

// initialize *K*-many scores to zero

Time complexity

- Suppose you have N training examples, in K classes. How long does it take to train an OVA classifier
 - if the base binary classifier takes O(N) time to learn?
 - if the base binary classifier takes O(N^2) time to learn?

Error bound

 Theorem: Suppose that the average error of the K binary classifiers is ε, then the error rate of the OVA multiclass classifier is at most (K-1) ε

• To prove this: how do different errors affect the maximum ratio of the probability of a multiclass error to the number of binary errors ("efficiency")?

Error bound proof

- If we have a false negative on one of the binary classifiers (assuming all other classifiers correctly output negative)
- What is the probability that we will make an incorrect multiclass prediction?

Efficiency: (K - 1) / K / 1 = (K - 1) / K

Error bound proof

- If we have k false positives with the binary classifiers
- What is the probability that we will make an incorrect multiclass prediction?
 - If there is also a false negative: 1
 - Efficiency =1 / k + 1
 - Otherwise k / (k + 1)
 - Efficiency = k / (k + 1) / k = 1 / (k + 1)

Error bound proof

- What is the worst case scenario?
 - False negative case: efficiency is (K-1)/K
 Larger than false positive efficiencies
 - There are K-many opportunities to get false negative, overall error bound is (K-1) ε

Reduction 2: AVA

• All versus all (aka all pairs)

• How many binary classifiers does this require?

Algorithm 14 AllVersusAllTrain(D^{multiclass}, BINARYTRAIN)

1:
$$f_{ij} \leftarrow \emptyset, \forall 1 \leq i < j \leq K$$

2: for $i = 1$ to K -1 do
3: $\mathbf{D}^{pos} \leftarrow \text{all } \mathbf{x} \in \mathbf{D}^{multiclass} \text{ labeled } i$
4: for $j = i+1$ to K do
5: $\mathbf{D}^{neg} \leftarrow \text{all } \mathbf{x} \in \mathbf{D}^{multiclass} \text{ labeled } j$
6: $\mathbf{D}^{bin} \leftarrow \{(\mathbf{x}, +1) : \mathbf{x} \in \mathbf{D}^{pos}\} \cup \{(\mathbf{x}, -1) : \mathbf{x} \in \mathbf{D}^{neg}\}$
7: $f_{ij} \leftarrow \mathbf{BINARYTRAIN}(\mathbf{D}^{bin})$
8: end for
9: end for
10: return all f_{ij} s

Algorithm 15 AllVersusAllTest(all f_{ij} , \hat{x})

1: $score \leftarrow \langle 0, 0, \dots, 0 \rangle$ // initialize K-many scores to zero 2: for i = 1 to K-1 do 3: for j = i+1 to K do 4: $y \leftarrow f_{ij}(\hat{x})$ 5: $score_i \leftarrow score_i + y$ 6: $score_j \leftarrow score_j - y$ 7: end for 8: end for 9: return $argmax_k \ score_k$

Time complexity

- Suppose you have N training examples, in K classes. How long does it take to train an AVA classifier
 - if the base binary classifier takes O(N) time to learn?
 - if the base binary classifier takes O(N^2) time to learn?

Error bound

 Theorem: Suppose that the average error of the K binary classifiers is ε, then the error rate of the AVA multiclass classifier is at most 2(K-1) ε

• Question: Does this mean that AVA is always worse than OVA?

Extensions

- Divide and conquer

 Organize classes into binary tree structures
- Use confidence to weight predictions of binary classifiers

- Instead of using majority vote

Topics

Given an arbitrary method for binary classification, how can we learn to make multiclass predictions? OVA, AVA

Fundamental ML concept: reductions