Beyond Binary Classification: Reductions

CMSC 422 MARINE CARPUAT <u>marine@cs.umd.edu</u>

Topics

Given an arbitrary method for binary classification, how can we learn to make multiclass predictions?

Fundamental ML concept: reductions

One Example of Reduction: Learning with Imbalanced Data

TASK: α -Weighted Binary Classification

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\alpha^{y=1}[f(x)\neq y]\right]$

Subsampling Optimality Theorem:

If the binary classifier achieves a binary error rate of ϵ , then the error rate of the α -weighted classifier is $\alpha \epsilon$

Multiclass classification

- Real world problems often have multiple classes (text, speech, image, biological sequences...)
- How can we perform multiclass classification?
 - Straightforward with decision trees or KNN
 - Can we use the perceptron algorithm?

Today: Reductions for Multiclass Classification

TASK: MULTICLASS CLASSIFICATION

Given:

- 1. An input space X and number of classes K
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times [K]$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x) \neq y]$

How many classes can we handle in practice?

• In most tasks, number of classes K < 100

- For much larger K
 - we need to frame the problem differently
 - e.g, machine translation or automatic speech recognition

Reduction 1: OVA

- "One versus all" (aka "one versus rest")
 - Train K-many binary classifiers
 - classifier k predicts whether an example belong to class k or not
 - At test time,
 - If only one classifier predicts positive, predict that class
 - Break ties randomly

Algorithm 12 ONEVERSUSALLTRAIN(D^{multiclass}, BINARYTRAIN)

- 1: for i = 1 to K do
- 2: $\mathbf{D}^{bin} \leftarrow \text{relabel } \mathbf{D}^{multiclass} \text{ so class } i \text{ is positive and } \neg i \text{ is negative}$
- $f_i \leftarrow \text{BINARYTRAIN}(\mathbf{D}^{bin})$
- 4: end for
- 5: **return** f_1, \ldots, f_K

Algorithm 13 ONEVERSUSALLTEST $(f_1, \ldots, f_K, \hat{x})$

- 1: Score $\leftarrow \langle 0, 0, \dots, 0 \rangle$
- 2: for i = 1 to K do
- $y \leftarrow f_i(\hat{x})$
- $_{4:} \quad score_i \leftarrow score_i + y$
- 5: end for
- 6: return argmax_k score_k

// initialize *K*-many scores to zero

Time complexity

- Suppose you have N training examples, in K classes. How long does it take to train an OVA classifier
 - if the base binary classifier takes O(N) time to learn?
 - if the base binary classifier takes O(N^2) time to learn?

Error bound

 Theorem: Suppose that the average error of the K binary classifiers is ε, then the error rate of the OVA multiclass classifier is at most (K-1) ε

• To prove this: how do different errors affect the maximum ratio of the probability of a multiclass error to the number of binary errors ("efficiency")?

Error bound proof

- If we have a false negative on one of the binary classifiers (assuming all other classifiers correctly output negative)
- What is the probability that we will make an incorrect multiclass prediction?

Efficiency: (K - 1) / K / 1 = (K - 1) / K

Error bound proof

- If we have m false positives with the binary classifiers
- What is the probability that we will make an incorrect multiclass prediction?

- If there is also a false negative: 1

• Efficiency =1 / (m + 1)

- If there is no false negative: m / (m + 1)
 - Efficiency = m / (m + 1) / m = 1 / (m + 1)

Error bound proof

- What is the worst case scenario?
 - False negative case: efficiency is (K-1)/K
 Larger than false positive efficiencies
 - There are K-many opportunities to get false negative, overall error bound is (K-1) ε

Reduction 2: AVA

• All versus all (aka all pairs)

• How many binary classifiers does this require?

Algorithm 14 AllVersusAllTrain(D^{multiclass}, BINARYTRAIN)

1:
$$f_{ij} \leftarrow \emptyset, \forall 1 \leq i < j \leq K$$

2: for $i = 1$ to K -1 do
3: $\mathbf{D}^{pos} \leftarrow \text{all } \mathbf{x} \in \mathbf{D}^{multiclass} \text{ labeled } i$
4: for $j = i+1$ to K do
5: $\mathbf{D}^{neg} \leftarrow \text{all } \mathbf{x} \in \mathbf{D}^{multiclass} \text{ labeled } j$
6: $\mathbf{D}^{bin} \leftarrow \{(\mathbf{x}, +1) : \mathbf{x} \in \mathbf{D}^{pos}\} \cup \{(\mathbf{x}, -1) : \mathbf{x} \in \mathbf{D}^{neg}\}$
7: $f_{ij} \leftarrow \mathbf{BINARYTRAIN}(\mathbf{D}^{bin})$
8: end for
9: end for
10: return all f_{ij} s

Algorithm 15 AllVersusAllTest(all f_{ij} , \hat{x})

 1: $score \leftarrow \langle 0, 0, \dots, 0 \rangle$ // initialize K-many scores to zero

 2: for i = 1 to K-1 do
 // initialize K-many scores to zero

 3: for j = i+1 to K do
 // initialize K-many scores to zero

 4: $y \leftarrow f_{ij}(\hat{x})$ // initialize K-many scores to zero

 5: $score_i \leftarrow score_i + y$ // initialize K-many scores to zero

 6: $score_j \leftarrow score_j - y$ // initialize K-many scores to zero

 7: end for
 // initialize K-many scores to zero

 8: end for
 // initialize K-many scores to zero

 9: return $argmax_k score_k$ // initialize K-many scores to zero

Time complexity

- Suppose you have N training examples, in K classes. How long does it take to train an AVA classifier
 - if the base binary classifier takes O(N) time to learn?
 - if the base binary classifier takes O(N^2) time to learn?

Error bound

 Theorem: Suppose that the average error of the K binary classifiers is ε, then the error rate of the AVA multiclass classifier is at most 2(K-1) ε

• Question: Does this mean that AVA is always worse than OVA?

Extensions

- Divide and conquer

 Organize classes into binary tree structures
- Use confidence to weight predictions of binary classifiers

- Instead of using majority vote

Topics

Given an arbitrary method for binary classification, how can we learn to make multiclass predictions? OVA, AVA

Fundamental ML concept: reductions

Ranking

• Canonical example: web search

- Given all the documents on the web
- For a user query, retrieve relevant documents, ranked from most relevant to least relevant

How can we reduce ranking to binary classification?

Preference function

- Given a query q and documents di and dj, the preference function outputs whether
 - di should be preferred to dj
 - Or dj should be preferred to di
- That's a binary classification problem!

Specifiying the reduction from ranking to binary classification

• How to train classifier that predicts preferences?

 How to turn the predicted preferences into a ranking? Algorithm 16 NAIVERANKTRAIN(RankingData, BINARYTRAIN)

Algorithm 17 NAIVERANKTEST(f, \hat{x})

- 1: $score \leftarrow \langle 0, 0, \ldots, 0 \rangle$
- ^{2:} for all i, j = 1 to M and $i \neq j$ do
- $y \leftarrow f(\hat{x}_{ij})$
- $_{4:} \quad score_i \leftarrow score_i + y$
- 5: $score_j \leftarrow score_j y$
- 6: end for
- 7: **return ARGSORT**(*score*)

// initialize *M*-many scores to zero

// get predicted ranking of i and j

// return queries sorted by score

Naïve approach

- Works well for bipartite problems

 "is this document relevant or not?"
- Not ideal for full ranking problems, because
 - Binary preference problems are not all equally important
 - Separates preference function and sorting

Improving on naïve approach

TASK: ω -RANKING

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \Sigma_M$

Compute: A function $f : \mathcal{X} \to \Sigma_M$ minimizing:

$$\mathbb{E}_{(\boldsymbol{x},\sigma)\sim\mathcal{D}}\left[\sum_{u\neq v} [\sigma_u < \sigma_v] \left[\hat{\sigma}_v < \hat{\sigma}_u\right] \,\omega(\sigma_u,\sigma_v)\right]$$
(5.7)

where $\hat{\sigma} = f(\mathbf{x})$

Example of cost functions

$$\omega(i,j) = \begin{cases} 1 & \text{if } \min\{i,j\} \le K \text{ and } i \neq j \\ 0 & \text{otherwise} \end{cases}$$

Resulting Ranking Algorithms

Algorithm 18 RANKTRAIN(\mathbf{D}^{rank} , ω , **BINARYTRAIN**)

- $\mathbf{D}^{bin} \leftarrow []$
- 2: for all $(x, \sigma) \in \mathbf{D}^{rank}$ do
- $_{3:}$ for all $u \neq v$ do
- $_{4:} \qquad y \leftarrow \mathbf{SIGN}(\sigma_{v} \sigma_{u})$

5:
$$w \leftarrow \omega(\sigma_u, \sigma_v)$$

6:
$$\mathbf{D}^{bin} \leftarrow \mathbf{D}^{bin} \oplus (y, w, x_{uv})$$

- 7: end for
- 8: end for
- 9: return BINARYTRAIN(D^{bin})

// y is +1 if u is prefered to v // w is the cost of misclassification

Ranking

• Canonical example: web search

- Given all the documents on the web
- For a user query, retrieve relevant documents, ranked from most relevant to least relevant

How can we reduce ranking to binary classification?

Preference function

- Given a query q and documents di and dj, the preference function outputs whether
 - di should be preferred to dj
 - Or dj should be preferred to di
- That's a binary classification problem!

Specifying the reduction from ranking to binary classification

• How to train classifier that predicts preferences?

 How to turn the predicted preferences into a ranking? Algorithm 16 NAIVERANKTRAIN(RankingData, BINARYTRAIN)

Algorithm 17 NAIVERANKTEST(f, \hat{x})

- 1: $score \leftarrow \langle 0, 0, \ldots, 0 \rangle$
- ^{2:} for all i, j = 1 to M and $i \neq j$ do
- $y \leftarrow f(\hat{x}_{ij})$
- $_{4:} \quad score_i \leftarrow score_i + y$
- 5: $score_j \leftarrow score_j y$
- 6: end for
- 7: **return ARGSORT**(*score*)

// initialize *M*-many scores to zero

// get predicted ranking of i and j

// return queries sorted by score

Naïve approach

Works well for bipartite problems

 "is this document relevant or not?"

• Not ideal for full ranking problems

Improving on naïve approach

TASK: ω -RANKING

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \Sigma_M$

Compute: A function $f : \mathcal{X} \to \Sigma_M$ minimizing:

$$\mathbb{E}_{(\boldsymbol{x},\sigma)\sim\mathcal{D}}\left[\sum_{u\neq v} [\sigma_u < \sigma_v] \left[\hat{\sigma}_v < \hat{\sigma}_u\right] \,\omega(\sigma_u,\sigma_v)\right]$$
(5.7)

where $\hat{\sigma} = f(\mathbf{x})$

Example of cost functions

$$\omega(i,j) = \begin{cases} 1 & \text{if } \min\{i,j\} \le K \text{ and } i \neq j \\ 0 & \text{otherwise} \end{cases}$$

Resulting Ranking Algorithms

Algorithm 18 RANKTRAIN(\mathbf{D}^{rank} , ω , **BINARYTRAIN**)

- $\mathbf{D}^{bin} \leftarrow []$
- 2: for all $(x, \sigma) \in \mathbf{D}^{rank}$ do
- $_{3:}$ for all $u \neq v$ do
- $_{4:} \qquad y \leftarrow \mathbf{SIGN}(\sigma_{v} \sigma_{u})$

5:
$$w \leftarrow \omega(\sigma_u, \sigma_v)$$

6:
$$\mathbf{D}^{bin} \leftarrow \mathbf{D}^{bin} \oplus (y, w, x_{uv})$$

- 7: end for
- 8: end for
- 9: return BINARYTRAIN(D^{bin})

// y is +1 if u is prefered to v // w is the cost of misclassification

Algorithm 19 RANKTEST(f, \hat{x} , obj)

- 1: if obj contains 0 or 1 elements then
- 2: return *obj*

3: **else**

4:	$p \leftarrow$ randomly chosen object in o	<i>bj</i> // pick pivot
5:	$left \leftarrow []$	// elements that seem smaller than p
6:	$right \leftarrow []$	// elements that seem larger than p
7:	for all $u \in obj \setminus \{p\}$ do	
8:	$\hat{y} \leftarrow f(x_{up})$	// what is the probability that u precedes p
9:	if uniform random variable <	\hat{y} then
10:	$left \leftarrow left \oplus u$	
11:	else	
12:	$right \leftarrow right \oplus u$	
13:	end if	
14:	end for	
15:	$left \leftarrow \text{RankTest}(f, \hat{x}, left)$	// sort earlier elements
16:	$right \leftarrow \text{RankTest}(f, \hat{x}, right)$	// sort later elements
17:	return <i>left</i> $\oplus \langle p \rangle \oplus right$	
18: end if		

- RankTest
 - A probabilistic version of the quicksort algorithm
 - Only O(Mlog₂M) calls to f in expectation
 - Better error bound than naïve algorithm (see CIML for theorem)

What you should know

- What are reductions and why they are useful
- Implement, analyze and prove error bounds of algorithms for
 - Weighted binary classification
 - Multiclass classification (OVA, AVA)
- Understand algorithms for
 - $-\omega$ -ranking