Linear Models & Gradient Descent

CMSC 422
MARINE CARPUAT
marine@cs.umd.edu

Figures credit: Piyush Rai
Binary classification via hyperplanes

- A classifier is a hyperplane \((w,b)\).
- At test time, we check on what side of the hyperplane examples fall:
 \[
 \hat{y} = \text{sign}(w^T x + b)
 \]
- This is a **linear classifier**
 - Because the prediction is a linear combination of feature values \(x\).
Task: Binary Classification

Given:

1. An input space \mathcal{X}
2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function f minimizing: $\mathbb{E}_{(x,y) \sim \mathcal{D}}[f(x) \neq y]$
Learning a Linear Classifier as an Optimization Problem

Objective function

\[\min_{w,b} L(w, b) \]

Loss function
measures how well classifier fits training data

Regularizer
prefers solutions that generalize well
The 0-1 Loss

- Small changes in w, b can lead to big changes in the loss value
- 0-1 loss is non-smooth, non-convex
Approximating the 0-1 loss with surrogate loss functions

• Examples (with $b = 0$)
 – Hinge loss $[1 - y_n w^T x_n]_+ = \max\{0, 1 - y_n w^T x_n\}$
 – Log loss $\log[1 + \exp(-y_n w^T x_n)]$
 – Exponential loss $\exp(-y_n w^T x_n)$

• All are convex upper-bounds on the 0-1 loss
Approximating the 0-1 loss with surrogate loss functions

• Examples (with $b = 0$)
 – Hinge loss $[1 - y_n w^T x_n]_+ = \max\{0, 1 - y_n w^T x_n\}$
 – Log loss $\log[1 + \exp(-y_n w^T x_n)]$
 – Exponential loss $\exp(-y_n w^T x_n)$

• Q: Which of these loss functions is not smooth?
Approximating the 0-1 loss with surrogate loss functions

• Examples (with $b = 0$)
 – Hinge loss $[1 - y_n w^T x_n]_+ = \max\{0, 1 - y_n w^T x_n\}$
 – Log loss $\log[1 + \exp(-y_n w^T x_n)]$
 – Exponential loss $\exp(-y_n w^T x_n)$

• Q: Which of these loss functions is most sensitive to outliers?
Casting Linear Classification as an Optimization Problem

Objective function

Loss function measures how well classifier fits training data

Regularizer prefers solutions that generalize well

\[
\min_{w,b} L(w, b) = \min_{w,b} \sum_{n=1}^{N} \mathbb{I}(y_n(w^T x_n + b) < 0) + \lambda R(w, b)
\]

\(\mathbb{I}(\cdot)\) Indicator function: 1 if \((\cdot)\) is true, 0 otherwise

The loss function above is called the 0-1 loss
The regularizer term

• Goal: find simple solutions (inductive bias)

• Example of simple solution
 – if most of w elements are zero, prediction depends only on a small number of features.
 – Formally, we want to minimize:
 \[R_{cnt}(w, b) = \sum_{d=1}^{D} \mathbb{I}(w_d \neq 0) \]
 – That’s NP-hard, so we use approximations instead. E.g., we encourage w_d’s to be small
Norm-based Regularizers

• l_p norms can be used as regularizers

$$\|\mathbf{w}\|_2^2 = \sum_{d=1}^{D} w_d^2$$
$$\|\mathbf{w}\|_1 = \sum_{d=1}^{D} |w_d|$$
$$\|\mathbf{w}\|_p = \left(\sum_{d=1}^{D} w_d^p\right)^{1/p}$$

Contour plots for:
- $p = 2$
- $p = 1$
- $p < 1$
Norm-based Regularizers

- l_p norms can be used as regularizers
- Smaller p favors sparse vectors w
 - i.e. most entries of w are close or equal to 0
- l_2 norm: convex, smooth, easy to optimize
- l_1 norm: encourages sparse w, convex, but not smooth at axis points
- $p < 1$: norm becomes non convex and hard to optimize
Casting Linear Classification as an Optimization Problem

Objective function

\[\min_{w,b} L(w, b) = \min_{w,b} \sum_{n=1}^{N} \mathbb{I}(y_n(w^T x_n + b) < 0) + \lambda R(w, b) \]

Loss function

measures how well classifier fits training data

Regularizer

prefers solutions that generalize well

\[\mathbb{I}(\cdot) \text{ Indicator function: 1 if } (\cdot) \text{ is true, 0 otherwise} \]

The loss function above is called the 0-1 loss
Recap: Linear Models

- General framework for binary classification
- Cast learning as optimization problem
- Optimization objective combines 2 terms
 - loss function: measures how well classifier fits training data
 - Regularizer: measures how simple classifier is
- Does not assume data is linearly separable
- Lets us separate model definition from training algorithm (Gradient Descent)
Gradient descent

• A general solution for our optimization problem

$$\min_{w,b} L(w, b) = \min_{w,b} \sum_{n=1}^{N} \mathbb{I}(y_n(w^T x_n + b) < 0) + \lambda R(w, b)$$

• Idea: take iterative steps to update parameters in the direction of the gradient
Gradient descent algorithm

Algorithm 22 \textsc{GradientDescent}(\mathcal{F}, K, \eta_1, \ldots)

1: \text{ } z^{(0)} \leftarrow \langle 0, 0, \ldots , 0 \rangle \quad \text{// initialize variable we are optimizing}
2: \textbf{for } k = 1 \ldots K \textbf{ do}
3: \quad \text{ } g^{(k)} \leftarrow \nabla_z \mathcal{F} |_{z^{(k-1)}} \quad \text{// compute gradient at current location}
4: \quad \text{ } z^{(k)} \leftarrow z^{(k-1)} - \eta^{(k)} g^{(k)} \quad \text{// take a step down the gradient}
5: \textbf{end for}
6: \textbf{return } z^{(K)}
Illustrating gradient descent in 1-dimensional case
Gradient Descent

• 2 questions

 – When to stop?

 – How to choose the step size?
Gradient Descent

• 2 questions
 – When to stop?
 • When the gradient gets close to zero
 • When the objective stops changing much
 • When the parameters stop changing much
 • Early
 • When performance on held-out dev set plateaus
 – How to choose the step size?
 • Start with large steps, then take smaller steps
Now let’s calculate gradients for multivariate objectives

- Consider the following learning objective:

\[\mathcal{L}(w, b) = \sum_n \exp \left[-y_n (w \cdot x_n + b) \right] + \frac{\lambda}{2} \|w\|^2 \]

- What do we need to do to run gradient descent?
(1) Derivative with respect to b

\[
\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \sum_n \exp \left[-y_n (w \cdot x_n + b) \right] + \frac{\partial}{\partial b} \frac{\lambda}{2} ||w||^2
\]

\[
= \sum_n \frac{\partial}{\partial b} \exp \left[-y_n (w \cdot x_n + b) \right] + 0
\]

\[
= \sum_n \left(\frac{\partial}{\partial b} - y_n (w \cdot x_n + b) \right) \exp \left[-y_n (w \cdot x_n + b) \right]
\]

\[
= -\sum_n y_n \exp \left[-y_n (w \cdot x_n + b) \right]
\]
(2) Gradient with respect to w

\[\nabla_w \mathcal{L} = \nabla_w \sum_n \exp \left[-y_n (w \cdot x_n + b) \right] + \nabla_w \frac{\lambda}{2} ||w||^2 \]
\[= \sum_n (\nabla_w - y_n (w \cdot x_n + b)) \exp \left[-y_n (w \cdot x_n + b) \right] + \lambda w \]
\[= -\sum_n y_n x_n \exp \left[-y_n (w \cdot x_n + b) \right] + \lambda w \]
Summary

• Gradient descent
 – A generic algorithm to minimize objective functions
 – Works well as long as functions are well behaved (ie convex)
 – Subgradient descent can be used at points where derivative is not defined
 – Choice of step size is important

• Optional: can we do better?
 – For some objectives, we can find closed form solutions (see CIML 7.6)