Linear Models &
Gradient Descent

CMSC 422

MARINE CARPUAT
marine@cs.umd.edu

Figures credit: Piyush Rai

mailto:marine@cs.umd.edu

Binary classification
via hyperplanes

A classifier is a hyperplane (w,b)

o At test time, we check on what
side of the hyperplane

examples fall
y =sign(wlx + b)

 This is a linear classifier

— Because the prediction is a linear
combination of feature values x

TASK: BINARY CLASSIFICATION

Given:

1. An input space X
2. An unknown distribution D over X'x{—1, +1}

Compute: A function f minimizing: E .. .p|f(¥) #]

L ea
as a

4)
Objective

-

function
_ l/_)
min L(w, b)

w,b

NiNg a Linear

N Optimizatio

4)

Loss function
measures how well

Classifier
n Problem

Regularizer
prefers solutions

classifier fits training

dat
- aa\/_/

that generalize

well
N L

The 0-1 Loss

00) y(w'x +Db)

« Small changes in w,b can lead to big
changes in the loss value

* 0-1loss Is non-smooth, non-convex

Approximating the 0-1loss with
surrogate loss functions

« Examples (with b = 0) |
— Hinge loss [1 — yaw'x,]+ = max{0,1 — y,w'x,}
—Log loss log[l + exp(—y.w'x,)]

— Exponential loss exp(—y»w ' x,)

* All are convex upper- Low”]
bounds on the 0-1 |
loss

Approximating the 0-1loss with
surrogate loss functions

« Examples (with b = 0) |
— Hinge loss [1 — yaw ' x,]+ = max{0,1 — y,wx,}
—Log loss log[l + exp(—y.w'x,)]
— Exponential loss exp(—y.w ' x,)

Hinge Loss ||

Liw) |
* Q: Which of these
loss functions is not

smooth? \ﬁ

Approximating the 0-1loss with
surrogate loss functions

« Examples (with b = 0)

— Hinge loss [1 — yaw’

Xn|+ = max{O, 1—y.w'x,}
— Log loss log[1 4 exp(—y.w ' x,)]
— Exponential loss exp(—y.w'x,)

9 og Loss
L(W) ssssssss

* Q: Which of these
loss functions is

most sensitive to \ﬁ

outliers?

Cast

aS all

4)

Objective
function

1

min L(w, b) = mig

w,b

Ng Li

-

_

Loss function h

measures how well
classifier fits training

N P

data \/_)

N

n=1

near Classification
Optimizatio

‘oblem

4 Regularizer
prefers solutions
that generalize

< well\/_/

Zﬂ(yn(wan + b) < 0) + AR(w, b)

H() Indicator function: 1 if (\) is true, 0 otherwise

The loss function above is called the 0-1 loss

The reqgularizer term
« Goal: find simple solutions (inductive bias)

* Example of simple solution

— if most of w elements are zero, prediction depends only
on a small number of features.

— Formally, we want to minimize:
D

R (w, b) = S I(wy # 0)
d=1

— That's NP-hard, so we use approximations instead.
E.g., we encourage w,'s to be small

Norm-based Reqgularizers

* [, norms can be used as regularizers
wl|3 = 25:1 Wq

Wil1 = 25:1 Lzl

wilp = (g, wi)P

w2 w2 w2

N LN)
e N

plots for p=2 p= p <

Norm-based Regularizers

[, norms can be used as regularizers

Smaller p favors sparse vectors w
— I.e. most entries of w are close or equal to 0

[, norm: convex, smooth, easy to optimize

[; norm: encourages sparse w, convex, but not
smooth at axis points

p <1 :norm becomes non convex and hard to
optimize

Cast

aS all

4)

Objective
function

1

min L(w, b) = mig

w,b

Ng Li

-

_

Loss function h

measures how well
classifier fits training

N P

data \/_)

N

n=1

near Classification
Optimizatio

‘oblem

4 Regularizer
prefers solutions
that generalize

< well\/_/

Zﬂ(yn(wan + b) < 0) + AR(w, b)

H() Indicator function: 1 if (\) is true, 0 otherwise

The loss function above is called the 0-1 loss

Recap: Linear Models

General framework for binary classification
Cast learning as optimization problem

Optimization objective combines 2 terms

— loss function: measures how well classifier fits
training data

— Reqularizer: measures how simple classifier is
Does not assume data is linearly separable

Lets us separate model definition from
training algorithm (Gradient Descent)

Gradient descent

A general solution for our optimization problem

N
L I(y, " R(w, b
TIB (w, b | ; Yo(w'x, + b) < 0)+ AR(w, b)

 |dea: take iterative steps to update parameters in the
direction of the gradient

Gradient descent algorithm

Obijective function
to minimize

Number of steps] Step size]

Algorithm 22 GRADIENTDESCENT(F, K N, ...

v 20« {0,0,...,0) // initialize variable we are optimizing
» fork=1...Kdo
5 M« Vi F| // compute gradient at current location

K) g (k) // take a step down the gradient
4

e 20 k) gl
s end for

e« return z®

llustrating gradient descent
in 1-dimensional case

f
A

-
o

f(m) . |

- N W s O O~ o O

» X
1 2 3 4 s5Mg 7 8 9 10 11 12

Gradient Descent

» 2 questions

— When to stop?

— How to choose the step size?

Gradient Descent

» 2 questions

— When to stop?
* When the gradient gets close to zero
* When the objective stops changing much
* When the parameters stop changing much
* Early
* When performance on held-out dev set plateaus

— How to choose the step size?
« Start with large steps, then take smaller steps

Now let’s calculate gradients for
multivariate objectives

» Consider the following learning objective

A
=L exp [~ yn(w 20 +b)] + + 5]|

* What do we need to do to run gradient
descent?

(1) Derivative with respect to b

Q| QU
c:-*‘h

| @

g|mam

=

=

SM/_\

J A
—yn(w-xy +b)| + == HWHZ

© ob 2

X
O

exp | — yn(w-x, +b)] +0

%_yn(w'xn+b)) €xXp [—yn(w-xn—kb)}

Ynexp | — yn(w - x, +)]

(6.12)

(6.13)

(6.14)

(6.15)

(2) Gradient with respect to w

A
Vwl =Vy) exp|—yu(w-x,+b)] + Vw§ [|w||? (6.16)
n

=Y (Vw—yn(w-x,+b))exp [—yn(w-x, +b)] + Aw

(6.17)
— — Eynxn exp [— yn(w cXn + b)} + Aw (6.18)

summary

* Gradient descent
— A generic algorithm to minimize objective functions

— Works well as long as functions are well behaved (ie
convex)

— Subgradient descent can be used at points where
derivative is not defined

— Choice of step size is important

« Optional: can we do better?

— For some objectives, we can find closed form
solutions (see CIML 7.6)

