Linear Models &
Gradient Descent

CMSC 422

MARINE CARPUAT
marine@cs.umd.edu

Figures credit: Piyush Rai


mailto:marine@cs.umd.edu

Binary classification
via hyperplanes

A classifier is a hyperplane (w,b)

o At test time, we check on what
side of the hyperplane

examples fall
y =sign(wlx + b)

 This is a linear classifier

— Because the prediction is a linear
combination of feature values x



TASK: BINARY CLASSIFICATION

Given:

1. An input space X
2. An unknown distribution D over X'x{—1, +1}

Compute: A function f minimizing: E .. .p|f(¥) # ]
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The 0-1 Loss

00) y(w'x +Db)

« Small changes in w,b can lead to big
changes in the loss value

* 0-1loss Is non-smooth, non-convex



Approximating the 0-1loss with
surrogate loss functions

« Examples (with b = 0) |
— Hinge loss [1 — yaw'x,]+ = max{0,1 — y,w'x,}
—Log loss  log[l + exp(—y.w'x,)]

— Exponential loss  exp(—y»w ' x,)

* All are convex upper- Low” ]
bounds on the 0-1 |
loss




Approximating the 0-1loss with
surrogate loss functions

« Examples (with b = 0) |
— Hinge loss  [1 — yaw ' x,]+ = max{0,1 — y,wx,}
—Log loss  log[l + exp(—y.w'x,)]
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* Q: Which of these
loss functions is not

smooth? \ﬁ




Approximating the 0-1loss with
surrogate loss functions

« Examples (with b = 0)

— Hinge loss [1 — yaw’

Xn|+ = max{O, 1—y.w'x,}
— Log loss log[1 4 exp(—y.w ' x,)]
— Exponential loss  exp(—y.w'x,)
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* Q: Which of these
loss functions is

most sensitive to \ﬁ

outliers?
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Zﬂ(yn(wan + b) < 0) + AR(w, b)

H() Indicator function: 1 if (\) is true, 0 otherwise

The loss function above is called the 0-1 loss



The reqgularizer term
« Goal: find simple solutions (inductive bias)

* Example of simple solution

— if most of w elements are zero, prediction depends only
on a small number of features.

— Formally, we want to minimize:
D

R (w, b) = S I(wy # 0)
d=1

— That's NP-hard, so we use approximations instead.
E.g., we encourage w,'s to be small



Norm-based Reqgularizers

* [, norms can be used as regularizers
wl|3 = 25:1 Wq

Wil1 = 25:1 Lzl

wilp = (g, wi)P
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Norm-based Regularizers

[, norms can be used as regularizers

Smaller p favors sparse vectors w
— I.e. most entries of w are close or equal to 0

[, norm: convex, smooth, easy to optimize

[; norm: encourages sparse w, convex, but not
smooth at axis points

p <1 :norm becomes non convex and hard to
optimize
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Recap: Linear Models

General framework for binary classification
Cast learning as optimization problem

Optimization objective combines 2 terms

— loss function: measures how well classifier fits
training data

— Reqularizer: measures how simple classifier is
Does not assume data is linearly separable

Lets us separate model definition from
training algorithm (Gradient Descent)



Gradient descent

A general solution for our optimization problem

N
L I(y, " R(w, b
TIB (w, b | ; Yo(w'x, + b) < 0)+ AR(w, b)

 |dea: take iterative steps to update parameters in the
direction of the gradient



Gradient descent algorithm

Obijective function
to minimize

Number of steps ] Step size ]

Algorithm 22 GRADIENTDESCENT(F, K N, ...

v 20« {0,0,...,0) // initialize variable we are optimizing
» fork=1...Kdo
5 M« Vi F| // compute gradient at current location

K) g (k) // take a step down the gradient
4

e 20 k) gl
s end for

e« return z®




llustrating gradient descent
in 1-dimensional case
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Gradient Descent

» 2 questions

— When to stop?

— How to choose the step size?



Gradient Descent

» 2 questions

— When to stop?
* When the gradient gets close to zero
* When the objective stops changing much
* When the parameters stop changing much
* Early
* When performance on held-out dev set plateaus

— How to choose the step size?
« Start with large steps, then take smaller steps



Now let’s calculate gradients for
multivariate objectives

» Consider the following learning objective

A
=L exp [~ yn(w 20 +b)] + + 5 ]|

* What do we need to do to run gradient
descent?



(1) Derivative with respect to b
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(2) Gradient with respect to w

A
Vwl =Vy) exp|—yu(w-x,+b)] + Vw§ [|w||? (6.16)
n

=Y (Vw—yn(w-x,+b))exp [ —yn(w-x, +b)] + Aw

(6.17)
— — Eynxn exp [ — yn(w cXn + b)} + Aw (6.18)



summary

* Gradient descent
— A generic algorithm to minimize objective functions

— Works well as long as functions are well behaved (ie
convex)

— Subgradient descent can be used at points where
derivative is not defined

— Choice of step size is important

« Optional: can we do better?

— For some objectives, we can find closed form
solutions (see CIML 7.6)



