
Linear Models & 

Gradient Descent

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu

Figures credit: Piyush Rai

mailto:marine@cs.umd.edu


Binary classification

via hyperplanes

• A classifier is a hyperplane (w,b)

• At test time, we check on what 

side of the hyperplane 

examples fall
 𝑦 = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)

• This is a linear classifier

– Because the prediction is a linear 

combination of feature values x





Learning a Linear Classifier

as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise

The loss function above is called the 0-1 loss

Loss function

measures how well 

classifier fits training 

data

Regularizer

prefers solutions 

that generalize 

well

Objective 
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The 0-1 Loss

• Small changes in w,b can lead to big 

changes in the loss value

• 0-1 loss is non-smooth, non-convex



Approximating the 0-1 loss with 

surrogate loss functions

• Examples (with b = 0)

– Hinge loss

– Log loss

– Exponential loss

• All are convex upper-

bounds on the 0-1 

loss



Approximating the 0-1 loss with 

surrogate loss functions

• Examples (with b = 0)

– Hinge loss

– Log loss

– Exponential loss

• Q: Which of these 

loss functions is not 

smooth?



Approximating the 0-1 loss with 

surrogate loss functions

• Examples (with b = 0)

– Hinge loss

– Log loss

– Exponential loss

• Q: Which of these 

loss functions is 

most sensitive to 

outliers?



Casting Linear Classification

as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise

The loss function above is called the 0-1 loss

Loss function

measures how well 

classifier fits training 

data

Regularizer

prefers solutions 

that generalize 

well

Objective 

function



The regularizer term

• Goal: find simple solutions  (inductive bias)

• Example of simple solution

– if most of w elements are zero, prediction depends only 

on a small number of features.

– Formally, we want to minimize:

– That’s NP-hard, so we use approximations instead.

E.g., we encourage wd’s to be small



Norm-based Regularizers

• 𝑙𝑝 norms can be used as regularizers

Contour

plots for p = 2 p = 1 p < 1



Norm-based Regularizers

• 𝑙𝑝 norms can be used as regularizers

• Smaller p favors sparse vectors w

– i.e. most entries of w are close or equal to 0

• 𝑙2 norm: convex, smooth, easy to optimize

• 𝑙1 norm:  encourages sparse w, convex, but not 

smooth at axis points

• 𝑝 < 1 : norm becomes non convex and hard to 

optimize



Casting Linear Classification

as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise

The loss function above is called the 0-1 loss

Loss function

measures how well 

classifier fits training 

data

Regularizer

prefers solutions 

that generalize 

well

Objective 

function



Recap: Linear Models

• General framework for binary classification

• Cast learning as optimization problem

• Optimization objective combines 2 terms

– loss function: measures how well classifier fits 

training data 

– Regularizer: measures how simple classifier is

• Does not assume data is linearly separable

• Lets us separate model definition from 

training algorithm (Gradient Descent)



Gradient descent

• A general solution for our optimization problem

• Idea: take iterative steps to update parameters in the 

direction of the gradient



Gradient descent algorithm

Objective function 
to minimize

Number of steps Step size



Illustrating gradient descent

in 1-dimensional case



Gradient Descent

• 2 questions

– When to stop?

– How to choose the step size?



Gradient Descent

• 2 questions

– When to stop?

• When the gradient gets close to zero

• When the objective stops changing much

• When the parameters stop changing much

• Early

• When performance on held-out dev set plateaus

– How to choose the step size?

• Start with large steps, then take smaller steps



Now let’s calculate gradients for  

multivariate objectives

• Consider the following learning objective

• What do we need to do to run gradient 

descent?



(1) Derivative with respect to b



(2) Gradient with respect to w



Summary

• Gradient descent

– A generic algorithm to minimize objective functions

– Works well as long as functions are well behaved (ie

convex)

– Subgradient descent can be used at points where 

derivative is not defined

– Choice of step size is important

• Optional: can we do better? 

– For some objectives, we can find closed form 

solutions (see CIML 7.6)


