A Probabilistic View of Machine Learning (1/2)

CMSC 422 MARINE CARPUAT <u>marine@cs.umd.edu</u>

Some slides based on material by Tom Mitchell

Today's topics

- Bayes rule review
- A probabilistic view of machine learning
 Joint Distributions
 - Bayes optimal classifier
- Statistical Estimation
 - Maximum likelihood estimates
 - Derive relative frequency as the solution to a constrained optimization problem

Bayes Rule

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London,* **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Exercise: Applying Bayes Rule

- Consider the 2 random variables
 - A = You have the flu
 - B = You just coughed
- Assume
 - P(A) = 0.05P(B|A) = 0.8P(B|not A) = 0.2
- What is P(A|B)?

Using a Joint Distribution

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Using a Joint Distribution

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

 Given the joint distribution, we can find the probability of any logical expression E involving these variables

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using a Joint Distribution

Given the joint distribution, we can make inferences

- E.g., P(Male|Poor)?
- Or P(Wealth | Gender, Hours)?

Recall: Formal Definition of Binary Classification (from CIML)

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x) \neq y]$

The Bayes Optimal Classifier

- Assume we know the data generating distribution $\ensuremath{\mathcal{D}}$
- We define the **Bayes Optimal classifier** as

What does "training" mean in probabilistic settings?

- Training = estimating \mathcal{D} from a finite training set
 - We typically assume that \mathcal{D} comes from a specific family of probability distributions

e.g., Bernouilli, Gaussian, etc

Learning means inferring parameters of that distributions

e.g., mean and covariance of the Gaussian

Training assumption: training examples are iid

- Independently and Identically distributed
 - i.e. as we draw a sequence of examples from \mathcal{D} , the n-th draw is independent from the previous n-1 sample

This assumption is usually false!
But sufficiently close to true to be useful

How can we estimate the joint probability distribution from data?

- Challenge: sparse and incomplete observations
- One approach: maximum likelihood estimation
 - Finds the parameters that maximize the probability of the data

Maximum Likelihood Estimates

Given a data set D of iid flips, which contains α_1 ones and α_0 zeros $P_{\theta}(D) = \theta^{\alpha_1}(1 - \theta)^{\alpha_0}$

$$\hat{\theta}_{MLE} = argmax_{\theta} P_{\theta}(D) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Maximum Likelihood Estimates

Given a data set D of iid rolls, which contains x_k outcomes for each k

K sided die $\forall k, P(X = k) = \theta_k$

 $P_{\theta}(D) = \prod_{k=1}^{K} \theta_k^{x_k}$

(Categorical Distribution) Problem: This objective lacks constraints!

 $\hat{\theta}_{MLE} = argmax_{\theta} P_{\theta}(D)$ $= argmax_{\theta} \log P_{\theta}(D)$ $= argmax_{\theta} \sum_{k=1}^{K} x_{k} \log(\theta_{k})$

Maximum Likelihood Estimates

K sided die $\forall k, P(X = k) = \theta_k$ A constrained optimization problem $\hat{\theta}_{MLE} = argmax_{\theta} \sum_{k=1}^{K} x_k \log(\theta_k)$ with $\sum_{k=1}^{K} \theta_k = 1$

We can solve this using **Lagrange multipliers** (on board)

$$\hat{\theta}_k = \frac{x_k}{\sum_i x_i}$$

What you should know

- Bayes rule
- A probabilistic view of machine learning
 - If we know the data generating distribution, we can define the Bayes optimal classifier
 - Under iid assumption
- How to estimate a probability distribution from data?
 - Maximum likelihood estimates
 - for Bernoulli and Categorical distributions