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Today’s topics

• Bayes rule review

• A probabilistic view of machine learning

– Joint Distributions

– Bayes optimal classifier

• Statistical Estimation

– Maximum likelihood estimates

– Derive relative frequency as the solution to a 

constrained optimization problem



Bayes Rule



Exercise: Applying Bayes Rule

• Consider the 2 random variables

A = You have the flu

B = You just coughed

• Assume

P(A) = 0.05

P(B|A) = 0.8

P(B|not A) = 0.2

• What is P(A|B)?



Using a Joint Distribution



Using a Joint Distribution

• Given the joint 

distribution, we can find 

the probability of any 

logical expression E 

involving these variables



Using a Joint Distribution

Given the joint distribution,

we can make inferences

– E.g., P(Male|Poor)?

– Or P(Wealth | Gender, Hours)?



Recall: Formal Definition of Binary 

Classification (from CIML)



The Bayes Optimal Classifier

• Assume we know the data generating distribution 𝒟

• We define the Bayes Optimal classifier as

• Theorem: Of all possible classifiers, the Bayes Optimal 

classifier achieves the smallest zero/one loss

• Bayes error rate

– Defined as the error rate of the Bayes optimal classifier

– Best error rate we can ever hope to achieve under zero/one loss

If we had access to 𝒟, 
Finding an optimal classifier would be trivial!

we don’t have access to 𝒟
So let’s try to estimate it instead!



What does “training” mean in 

probabilistic settings?

• Training = estimating 𝒟 from a finite training set

– We typically assume that 𝒟 comes from a specific 

family of probability distributions

e.g., Bernouilli, Gaussian, etc

– Learning means inferring parameters of that 

distributions

e.g., mean and covariance of the Gaussian



Training assumption: training 

examples are iid

• Independently and Identically 

distributed

– i.e. as we draw a sequence of examples from 

𝒟, the n-th draw is independent from the 

previous n-1 sample

• This assumption is usually false!

– But sufficiently close to true to be useful



How can we estimate the joint 

probability distribution from data?

• Challenge: sparse and incomplete 

observations

• One approach: maximum likelihood 

estimation

– Finds the parameters that maximize the 

probability of the data



Maximum Likelihood Estimates

Given a data set D of iid flips, which 

contains 𝛼1 ones and 𝛼0 zeros

𝑃𝜃(𝐷) = 𝜃𝛼1(1 − 𝜃)𝛼0

 𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑃𝜃 𝐷 =
𝛼1

𝛼1 + 𝛼0



Maximum Likelihood Estimates

Given a data set D of iid rolls, which 

contains 𝑥𝑘 outcomes for each 𝑘

𝑃𝜃(𝐷) =  

𝑘=1

𝐾

𝜃𝑘
𝑥𝑘

 𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑃𝜃 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 log 𝑃𝜃 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃  

𝑘=1

𝐾

𝑥𝑘log(𝜃𝑘)

K sided die

∀ 𝑘, 𝑃 𝑋 = 𝑘 = 𝜃𝑘

(Categorical 

Distribution)

Problem: 
This objective lacks 

constraints!



Maximum Likelihood Estimates

A constrained optimization problem

 𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃  

𝑘=1

𝐾

𝑥𝑘log(𝜃𝑘)

𝑤𝑖𝑡ℎ  

𝑘=1

𝐾

𝜃𝑘 = 1

K sided die

∀ 𝑘, 𝑃 𝑋 = 𝑘 = 𝜃𝑘

We can solve this using Lagrange multipliers

(on board)

 𝜃𝑘 =
𝑥𝑘

 𝑖 𝑥
𝑖



What you should know

• Bayes rule

• A probabilistic view of machine learning

– If we know the data generating distribution, we can 

define the Bayes optimal classifier

– Under iid assumption

• How to estimate a probability distribution from 

data?

– Maximum likelihood estimates

– for Bernoulli and Categorical distributions


