A Probabilistic View of Machine Learning (1/2)

CMSC 422
Marine Carpuat
marine@cs.umd.edu

Some slides based on material by Tom Mitchell

Today's topics

- Bayes rule review
- A probabilistic view of machine learning
- Joint Distributions
- Bayes optimal classifier
- Statistical Estimation
- Maximum likelihood estimates
- Derive relative frequency as the solution to a constrained optimization problem

Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A)^{*} P(A)}{P(B)} \quad \text { Bayes' rule }
$$

we call $P(A)$ the "prior"
and $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418
...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of analogical or inductive reasoning...

Exercise: Applying Bayes Rule

- Consider the 2 random variables

A = You have the flu
B = You just coughed

- Assume
$P(A)=0.05$
$P(B \mid A)=0.8$
$P(B \mid$ not $A)=0.2$
- What is $P(A \mid B)$?

Using a Joint Distribution

gender hours_worked wealth			
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Using a Joint Distribution

```
gender hours_worked wealth
Female v0:40.5-
```

- Given the joint distribution, we can find the probability of any logical expression E involving these variables

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Using a Joint Distribution

```
gender hours_worked wealth
Female v0:40.5- poor 0.253122
```


Given the joint distribution, we can make inferences

- E.g., P(Male|Poor)?
- Or P(Wealth | Gender, Hours)?

Recall: Formal Definition of Binary Classification (from CIML)

TASK: BINARY CLASSIFICATION

Given:

1. An input space \mathcal{X}
2. An unknown distribution \mathcal{D} over $\mathcal{X} \times\{-1,+1\}$

Compute: A function f minimizing: $\mathbb{E}_{(x, y) \sim \mathcal{D}}[f(\boldsymbol{x}) \neq y]$

The Bayes Optimal Classifier

- Assume we know the data generating distribution \mathcal{D}
- We define the Bayes Optimal classifier as

- Best error rate we can ever hope to achieve under zero/one loss

What does "training" mean in probabilistic settings?

- Training $=$ estimating \mathcal{D} from a finite training set
- We typically assume that \mathcal{D} comes from a specific family of probability distributions
e.g., Bernouilli, Gaussian, etc
- Learning means inferring parameters of that distributions
e.g., mean and covariance of the Gaussian

Training assumption: training examples are iid

- Independently and Identically distributed
- i.e. as we draw a sequence of examples from \mathcal{D}, the n-th draw is independent from the previous n -1 sample
- This assumption is usually false!
- But sufficiently close to true to be useful

How can we estimate the joint probability distribution from data?

- Challenge: sparse and incomplete observations
- One approach: maximum likelihood estimation
- Finds the parameters that maximize the probability of the data

Maximum Likelihood Estimates

(Bernoulli)

Given a data set D of iid flips, which contains α_{1} ones and α_{0} zeros

$$
P_{\theta}(D)=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}}
$$

$$
\hat{\theta}_{M L E}=\operatorname{argmax}_{\theta} P_{\theta}(D)=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
$$

Maximum Likelihood Estimates

Given a data set D of iid rolls, which contains x_{k} outcomes for each k

K sided die
$\forall k, P(X=k)=\theta_{k}$

$$
P_{\theta}(D)=\prod_{k=1}^{K} \theta_{k}^{x_{k}}
$$

(Categorical
Distribution)

Problem:
This objective lacks constraints!

$$
\begin{aligned}
\hat{\theta}_{M L E} & =\operatorname{argmax}_{\theta} P_{\theta}(D) \\
& =\operatorname{argmax}_{\theta} \log P_{\theta}(D) \\
& =\operatorname{argmax}_{\theta} \sum_{k=1}^{K} x_{k} \log \left(\theta_{k}\right)
\end{aligned}
$$

Maximum Likelihood Estimates

K sided die
$\forall k, P(X=k)=\theta_{k}$

A constrained optimization problem

$\hat{\theta}_{M L E}=\operatorname{argmax}_{\theta} \sum_{k=1}^{K} x_{k} \log \left(\theta_{k}\right)$

with $\quad \sum_{k=1}^{K} \theta_{k}=1$
We can solve this using Lagrange multipliers (on board)

$$
\hat{\theta}_{k}=\frac{x_{k}}{\sum_{i} x_{i}}
$$

What you should know

- Bayes rule
- A probabilistic view of machine learning
- If we know the data generating distribution, we can define the Bayes optimal classifier
- Under iid assumption
- How to estimate a probability distribution from data?
- Maximum likelihood estimates
- for Bernoulli and Categorical distributions

