A Probabilistic View of Machine Learning (2/2)

CMSC 422
MARINE CARPUAT
marine@cs.umd.edu

Some slides based on material by Tom Mitchell
What we know so far...

• Bayes rule

• A probabilistic view of machine learning
 – If we know the data generating distribution, we can define the Bayes optimal classifier
 – Under iid assumption

• How to estimate a probability distribution from data?
 – Maximum likelihood estimation
Maximum Likelihood Estimates

Each coin flip yields a Boolean value for X

$X \sim \text{Bernoulli}: P(X) = \theta^X(1 - \theta)^{1-X}$

Given a data set D of iid flips, which contains α_1 ones and α_0 zeros

$P_\theta(D) = \theta^{\alpha_1}(1 - \theta)^{\alpha_0}$

$$\hat{\theta}_{MLE} = \arg \max_\theta P_\theta(D) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$
Maximum Likelihood Estimates

A constrained optimization problem

\[\hat{\theta}_{MLE} = \arg\max_{\theta} \sum_{k=1}^{K} x_k \log(\theta_k) \]

with \[\sum_{k=1}^{K} \theta_k = 1 \]

Can be solved using e.g., Lagrange Multipliers (on board)

\[\hat{\theta}_k = \frac{x_k}{\sum_{i=1}^{K} x_i} \]
Let’s learn a classifier by learning $P(Y|X)$

• Goal: learn a classifier $P(Y|X)$

• Prediction:
 – Given an example x
 – Predict $\hat{y} = \arg\max_y P(Y = y | X = x)$
Parameters for \(P(X,Y) \) vs. \(P(Y|X) \)

\(Y = \text{Wealth} \)
\(X = \langle \text{Gender}, \text{Hours_worked} \rangle \)

| gender | hours_worked | wealth | \(P(Y|X) \) |
|--------|---------------|--------|-------------|
| Female | v0:40.5- | poor | 0.253122 |
| | | rich | 0.0245895 |
| | v1:40.5+ | poor | 0.0421768 |
| | | rich | 0.0116293 |
| Male | v0:40.5- | poor | 0.331313 |
| | | rich | 0.0971295 |
| | v1:40.5+ | poor | 0.134106 |
| | | rich | 0.105933 |

| Gender | Hrs_Worked | \(P(\text{rich} | G,HW) \) | \(P(\text{poor} | G,HW) \) |
|--------|-------------|-------------|-------------|
| F | <40.5 | .09 | .91 |
| F | >40.5 | .21 | .79 |
| M | <40.5 | .23 | .77 |
| M | >40.5 | .38 | .62 |
How many parameters do we need to estimate?

Suppose $X = < X_1, X_2, ... X_d >$
where X_i and Y are Boolean random variables

Q: How many parameters do we need to estimate $P(Y|X_1, X_2, ... X_d)$?

A: Too many to estimate $P(Y|X)$ directly from data!
Naïve Bayes Assumption

Naïve Bayes assumes

\[P(X_1, X_2, \ldots X_d | Y) = \prod_{i=1}^{d} P(X_i | Y) \]

i.e., that \(X_i \) and \(X_j \) are **conditionally independent** given \(Y \), for all \(i \neq j \)
Conditional Independence

• Definition:
 X is conditionally independent of Y given Z if \(P(X|Y,Z) = P(X|Z) \)

• Recall that X is independent of Y if \(P(X|Y)=P(X) \)
Naïve Bayes classifier

\[\hat{y} = \arg\max_y P(Y = y \mid X = x) \]
\[= \arg\max_y P(Y = y) P(X = x \mid Y = y) \]
\[= \arg\max_y P(Y = y) \prod_{i=1}^{d} P(X_i = x_i \mid Y = y) \]

Bayes rule
+ Conditional independence assumption
How many parameters do we need to estimate?

• To describe $P(Y)$?

• To describe $P(X = \langle X_1, X_2, \ldots, X_d \rangle | Y)$
 – Without conditional independence assumption?

 – With conditional independence assumption?

(Suppose all random variables are Boolean)
Training a Naïve Bayes classifier

Let’s assume discrete X_i and Y

TrainNaïveBayes (Data)

for each value y_k of Y

estimate $\pi_k = P(Y = y_k)$

for each value x_{ij} of X_i

estimate $\theta_{ijk} = P(X_i = x_{ij} \mid Y = y_k)$

\[
\frac{\text{# examples for which } X_i = x_{ij} \text{ and } Y = y_k}{\text{# examples for which } Y = y_k}
\]
Naïve Bayes Properties

• A simple, easy to implement classifier, that performs well in practice

• Subtleties
 – Often the Xi are not really conditionally independent
 – What if the Maximum Likelihood estimate for P(Xi|Y) is zero?
What is the decision boundary of a Naïve Bayes classifier?
Naïve Bayes Properties

• Naïve Bayes is a linear classifier
 – See CIML for example of computation of Log Likelihood Ratio

• Choice of probability distribution is a form of inductive bias
Generative Stories

• Probabilistic models tell a fictional story explaining how our training data was created

• Example of a generative story for a multiclass classification task with continuous features

For each example $n = 1 \ldots N$:

(a) Choose a label $y_n \sim \text{Disc}(\theta)$

(b) For each feature $d = 1 \ldots D$:

 i. Choose feature value $x_{n,d} \sim \text{Nor}(\mu_{y_n,d}, \sigma_{y_n,d}^2)$
From the Generative Story to the Likelihood Function

For each example $n = 1 \ldots N$:

(a) Choose a label $y_n \sim \text{Disc}(\theta)$

(b) For each feature $d = 1 \ldots D$:

 i. Choose feature value $x_{n,d} \sim \text{Nor}(\mu_{y_n,d}, \sigma^2_{y_n,d})$

\[
p(D) = \prod_n \theta_{y_n} \prod_d \frac{1}{\sqrt{2\pi\sigma^2_{y_n,d}}} \exp \left[-\frac{1}{2\sigma^2_{y_n,d}} (x_{n,d} - \mu_{y_n,d})^2 \right]
\]
What you should know

• The Naïve Bayes classifier
 – Conditional independence assumption
 – How to train it?
 – How to make predictions?
 – How does it relate to other classifiers we know?

• Fundamental Machine Learning concepts & tools
 – iid assumption
 – Bayes optimal classifier
 – Maximum likelihood estimation
 – Lagrange multipliers