A Probabilistic View of Machine Learning (2/2)

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu

What we know so far...

- Bayes rule
- A probabilistic view of machine learning
 - If we know the data generating distribution, we can define the Bayes optimal classifier
 - Under iid assumption
- How to estimate a probability distribution from data?
 - Maximum likelihood estimation

Maximum Likelihood Estimates

X=1 X=0 $P(X=1) = \theta$ $P(X=0) = 1-\theta$ (Bernoulli) Each coin flip yields a Boolean value for X

$$X \sim \text{Bernouilli: } P(X) = \theta^X (1 - \theta)^X$$

Given a data set D of iid flips, which contains α_1 ones and α_0 zeros $P_{\theta}(D) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$

$$\hat{\theta}_{MLE} = argmax_{\theta} P_{\theta}(D) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Maximum Likelihood Estimates

K sided die $\forall k, P(X = k) = \theta_k$

A constrained optimization problem

$$\hat{\theta}_{MLE} = argmax_{\theta} \sum_{k=1}^{K} x_k \log(\theta_k)$$

$$with \qquad \sum_{k=1}^{K} \theta_k = 1$$

Can be solved using e.g., Lagrange Multipliers (on board)

$$\hat{\theta}_k = \frac{x_k}{\sum_{i=1}^K x_i}$$

Let's learn a classifier by learning P(Y|X)

Goal: learn a classifier P(Y|X)

- Prediction:
 - Given an example x
 - Predict $\hat{y} = argmax_y P(Y = y | X = x)$

Parameters for P(X,Y) vs. P(Y|X)

Conditional probability distribution P(Y|X)

F	<40.5	.09	.91
F	>40.5	.21	.79
M	<40.5	.23	.77
M	>40.5	.38	.62
	F M	F >40.5 M <40.5	F >40.5 .21 M <40.5 .23

How many parameters do we need to estimate?

Suppose $X = \langle X_1, X_2, ... X_d \rangle$ where X_i and Y are Boolean random variables

Q: How many parameters do we need to estimate $P(Y|X_1, X_2, ... X_d)$?

A: Too many to estimate P(Y|X) directly from data!

Naïve Bayes Assumption

Naïve Bayes assumes

$$P(X_1, X_2, ... X_d | Y) = \prod_{i=1}^d P(X_i | Y)$$

i.e., that X_i and X_j are **conditionally** independent given Y, for all $i \neq j$

Conditional Independence

Definition:

X is conditionally independent of Y given Z if P(X|Y,Z) = P(X|Z)

• Recall that X is independent of Y if P(X|Y)=P(X)

Naïve Bayes classifier

$$\hat{y} = argmax_y P(Y = y | X = x)$$

$$= argmax_y P(Y = y) P(X = x | Y = y)$$

$$= argmax_y P(Y = y) \prod_{i=1}^{d} P(X_i = x_i | Y = y)$$

Bayes rule

+ Conditional independence assumption

How many parameters do we need to estimate?

• To describe P(Y)?

- To describe $P(X = < X_1, X_2, ... X_d > | Y)$
 - Without conditional independence assumption?

- With conditional independence assumption?

(Suppose all random variables are Boolean)

Training a Naïve Bayes classifier

Let's assume discrete Xi and Y

examples for which $Y = y_k$

examples

TrainNaïveBayes (Data)

for each value y_k of Y

estimate $\pi_k = P(Y = y_k)$

for each value x_{ij} of X_i

estimate
$$\theta_{ijk} = P(X_i = x_{ij} | Y = y_k)$$

 $\frac{\# \ examples \ for \ which \ X_i = x_{ij} \ and \ Y = y_k}{\# \ examples \ for \ which \ Y = y_k}$

Naïve Bayes Properties

 A simple, easy to implement classifier, that performs well in practice

Subtleties

- Often the Xi are not really conditionally independent
- What if the Maximum Likelihood estimate for P(Xi|Y) is zero?

What is the decision boundary of a Naïve Bayes classifier?

Naïve Bayes Properties

- Naïve Bayes is a linear classifier
 - See CIML for example of computation of Log Likelihood Ratio

Choice of probability distribution is a form of inductive bias

Generative Stories

 Probabilistic models tell a fictional story explaining how our training data was created

 Example of a generative story for a multiclass classification task with continuous features

For each example n = 1 ... N:

- (a) Choose a label $y_n \sim Disc(\theta)$
- (b) For each feature $d = 1 \dots D$:
 - i. Choose feature value $x_{n,d} \sim Nor(\mu_{y_n,d}, \sigma_{y_n,d}^2)$

From the Generative Story to the Likelihood Function

For each example $n = 1 \dots N$:

- (a) Choose a label $y_n \sim Disc(\theta)$
- (b) For each feature $d = 1 \dots D$:
 - i. Choose feature value $x_{n,d} \sim \mathcal{N}or(\mu_{y_n,d}, \sigma^2_{y_n,d})$

$$p(D) = \prod_{n} \underbrace{\frac{\theta_{y_n}}{\int_{\text{choose label}} \left[\frac{1}{\sqrt{2\pi\sigma_{y_n,d}^2}} \exp\left[-\frac{1}{2\sigma_{y_n,d}^2} (x_{n,d} - \mu_{y_n,d})^2 \right]}_{\text{choose feature value}}$$

for each feature

What you should know

- The Naïve Bayes classifier
 - Conditional independence assumption
 - How to train it?
 - How to make predictions?
 - How does it relate to other classifiers we know?
- Fundamental Machine Learning concepts & tools
 - iid assumption
 - Bayes optimal classifier
 - Maximum likelihood estimation
 - Lagrange multipliers