Unsupervised Learning Principal Component Analysis

CMSC 422 MARINE CARPUAT <u>marine@cs.umd.edu</u>

Illustrations credit: Maria-Florina Balcan

Unsupervised Learning

- Discovering hidden structure in data
- What algorithms do we know for unsupervised learning?

– K-Means Clustering

• Today: how can we learn better representations of our data points?

Dimensionality Reduction

- Goal: extract hidden lower-dimensional structure from high dimensional datasets
- Why?
 - To visualize data more easily
 - To remove noise in data
 - To lower resource requirements for storing/processing data
 - To improve classification/clustering

Examples of data points in D dimensional space that can be effectively represented in a d-dimensional subspace (d < D)

Principal Component Analysis

- Goal: Find a projection of the data onto directions that maximize variance of the original data set
 - Intuition: those are directions in which most information is encoded

 Definition: Principal Components are orthogonal directions that capture most of the variance in the data

PCA: finding principal components

• 1st PC

- Projection of data points along 1st PC discriminates data most along any one direction
- 2nd PC
 - next orthogonal direction of greatest variability
- And so on...

PCA: notation

- Data points
 - Represented by matrix X of size NxD
 - Let's assume data is centered
- Principal components are d vectors: $v_1, v_2, ..., v_d$ $v_i. v_j = 0, i \neq j$ and $v_i. v_i = 1$
- The sample variance data projected on vector v is $\sum_{i=1}^{n} (x_i^T v)^2 = (Xv)^T (Xv)$

PCA formally

• Finding vector that maximizes sample variance of projected data: $argmax_v v^T X^T X v$ such that $v^T v = 1$

- A constrained optimization problem
 - Lagrangian folds constraint into objective: $argmax_v v^T X^T X v - \lambda(v^T v - 1)$
 - Solutions are vectors v such that X^T Xv = λv
 i.e. eigenvectors of X^T X(sample covariance matrix)

PCA formally

- The eigenvalue λ denotes the amount of variability captured along dimension v

– Sample variance of projection $v^T X^T X v = \lambda$

- If we rank eigenvalues from large to small
 - The 1st PC is the eigenvector of $X^T X$ associated with largest eigenvalue
 - The 2^{nd} PC is the eigenvector of $X^T X$ associated with 2^{nd} largest eigenvalue

Alternative interpretation of PCA

 PCA finds vectors v such that projection on to these vectors minimizes reconstruction error

$$\frac{1}{n}\sum_{i=1}^{n} \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i)\mathbf{v}\|^2$$

XZ

V

Resulting PCA algorithm

Algorithm 36 PCA(D, K)

 1: $\mu \leftarrow MEAN(X)$ // compute data mean for centering

 2: $\mathbf{D} \leftarrow (\mathbf{X} - \mu \mathbf{1}^{\top})^{\top} (\mathbf{X} - \mu \mathbf{1}^{\top})$ // compute covariance, 1 is a vector of ones

 3: $\{\lambda_k, u_k\} \leftarrow$ top K eigenvalues/eigenvectors of D
 // project data using U

How to choose the hyperparameter K?

• i.e. the number of dimensions

• We can ignore the components of smaller significance

An example: Eigenfaces

Eigenfaces from 7562 images:

top left image is linear combination of rest.

Sirovich & Kirby (1987) Turk & Pentland (1991)

PCA pros and cons

- Pros
 - Eigenvector method
 - No tuning of the parameters
 - No local optima
- Cons
 - Only based on covariance (2nd order statistics)
 - Limited to linear projections

What you should know

- Principal Components Analysis
 - Goal: Find a projection of the data onto directions that maximize variance of the original data set
 - PCA optimization objectives and resulting algorithm
 - Why this is useful!