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Beyond linear classification

• Problem: linear classifiers

– Easy to implement and easy to optimize

– But limited to linear decision boundaries

• What can we do about it?

– Last week: Neural networks

• Very expressive but harder to optimize (non-

convex objective)

– Today: Kernels



Kernel Methods

• Goal: keep advantages of linear models, 

but make them capture non-linear 

patterns in data!

• How?

– By mapping data to higher dimensions where 

it exhibits linear patterns



Classifying non-linearly separable 

data with a linear classifier: examples

Non-linearly 

separable data in 1D

Becomes linearly 

separable in new 2D 

space

defined by the 

following mapping:



Classifying non-linearly separable 

data with a linear classifier: examples

Non-linearly 

separable data in 2D

Becomes linearly separable in the 3D space 

defined by the following transformation:



Defining feature mappings

• Map an original feature vector

to an expanded version

• Example: quadratic feature mapping represents feature 

combinations



Feature Mappings

• Pros: can help turn non-linear classification 

problem into linear problem

• Cons: “feature explosion” creates issues 

when training linear classifier in new 

feature space

– More computationally expensive to train

– More training examples needed to avoid 

overfitting



Kernel Methods

• Goal: keep advantages of linear models, 

but make them capture non-linear 

patterns in data!

• How?

– By mapping data to higher dimensions where 

it exhibits linear patterns

– By rewriting linear models so that the 

mapping never needs to be explicitly 

computed



The Kernel Trick

• Rewrite learning algorithms so they only depend 

on dot products between two examples

• Replace dot product                     

by kernel function

which computes the dot product implicitly



Example of Kernel function



Another example of Kernel 

Function (from CIML)

What is the function k(x,z) that 
can implicitly compute the dot 

product                             ?



Kernels: Formally defined



Kernels: Mercer’s condition

For all square 

integrable functions f

• Can any function be used as a kernel function?

• No! it must satisfy Mercer’s condition.



Kernels: Constructing 

combinations of kernels



Commonly Used Kernel Functions



The Kernel Trick

• Rewrite learning algorithms so they only depend 

on dot products between two examples

• Replace dot product                     

by kernel function

which computes the dot product implicitly



“Kernelizing” the perceptron

• Naïve approach: let’s explicitly train a perceptron 

in the new feature space

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm using 

dot products between examples



“Kernelizing” the perceptron

• Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight 

vector w can always be represented as a linear 

combination of the expanded training data”

Proof by induction

(in CIML)



“Kernelizing” the perceptron

• We can use the perceptron representer theorem to 

compute activations as a dot product between examples



“Kernelizing” the perceptron

• Same training algorithm, but
doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

• We can apply the kernel trick!



Kernel Methods

• Goal: keep advantages of linear models, 

but make them capture non-linear 

patterns in data!

• How?

– By mapping data to higher dimensions

where it exhibits linear patterns

– By rewriting linear models so that the 

mapping never needs to be explicitly 

computed



Discussion

• Other algorithms can be kernelized:

– See CIML for K-means

– We’ll talk about Support Vector Machines next

• Do Kernels address all the downsides of  

“feature explosion”?

– Helps reduce computation cost during 

training

– But overfitting remains an issue



What you should know

• Kernel functions

– What they are, why they are useful, how they relate to 

feature combination

• Kernelized perceptron

– You should be able to derive it and implement it


