Kernel Methods

CMSC 422
Marine Carpuat
marine@cs.umd.edu

Beyond linear classification

- Problem: linear classifiers
- Easy to implement and easy to optimize
- But limited to linear decision boundaries
- What can we do about it?
- Last week: Neural networks
- Very expressive but harder to optimize (nonconvex objective)
- Today: Kernels

Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!
- How?
- By mapping data to higher dimensions where it exhibits linear patterns

Classifying non－linearly separable data with a linear classifier：examples

ロロロロロロ00000ロロロロロローX

Non－linearly
separable data in 1D

Becomes linearly separable in new 2D space defined by the following mapping：

$$
x \rightarrow\left\{x, x^{2}\right\}
$$

Classifying non-linearly separable data with a linear classifier: examples

Non-linearly
separable data in 2D

Becomes linearly separable in the 3D space defined by the following transformation:
$\mathbf{x}=\left\{x_{1}, x_{2}\right\} \rightarrow \mathbf{z}=\left\{x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right\}$

Defining feature mappings

- Map an original feature vector $x=\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{D}\right\rangle$ to an expanded version $\phi(\boldsymbol{x})$
- Example: quadratic feature mapping represents feature combinations

$$
\begin{aligned}
\phi(\boldsymbol{x})= & \left\langle 1,2 x_{1}, 2 x_{2}, 2 x_{3}, \ldots, 2 x_{D}\right. \\
& x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{1} x_{D} \\
& x_{2} x_{1}, x_{2}^{2}, x_{2} x_{3}, \ldots, x_{2} x_{D} \\
& x_{3} x_{1}, x_{3} x_{2}, x_{3}^{2}, \ldots, x_{2} x_{D} \\
& \ldots, \\
& \left.x_{D} x_{1}, x_{D} x_{2}, x_{D} x_{3}, \ldots, x_{D}^{2}\right\rangle
\end{aligned}
$$

Feature Mappings

- Pros: can help turn non-linear classification problem into linear problem
- Cons: "feature explosion" creates issues when training linear classifier in new feature space
- More computationally expensive to train
- More training examples needed to avoid overfitting

Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!
- How?
- By mapping data to higher dimensions where it exhibits linear patterns
- By rewriting linear models so that the mapping never needs to be explicitly computed

The Kernel Trick

- Rewrite learning algorithms so they only depend on dot products between two examples
- Replace dot product $\phi(\mathbf{x})^{\top} \phi(z)$ by kernel function $k(\mathbf{x}, \mathbf{z})$
which computes the dot product implicitly

Example of Kernel function

Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
Let's assume we are given a function k (kernel) that takes as inputs \mathbf{x} and \mathbf{z}

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& =\phi(\mathbf{x})^{\top} \boldsymbol{\phi}(\mathbf{z})
\end{aligned}
$$

The above k implicitly defines a mapping ϕ to a higher dimensional space

$$
\phi(\mathbf{x})=\left\{x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right\}
$$

Another example of Kernel Function (from CIML)

$$
\begin{aligned}
\phi(\boldsymbol{x})= & \left\langle 1,2 x_{1}, 2 x_{2}, 2 x_{3}, \ldots, 2 x_{D},\right. \\
& x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{1} x_{D}, \\
& x_{2} x_{1}, x_{2}^{2}, x_{2} x_{3}, \ldots, x_{2} x_{D}, \\
& x_{3} x_{1}, x_{3} x_{2}, x_{3}^{2}, \ldots, x_{2} x_{D},
\end{aligned}
$$

$$
\left.x_{D} x_{1}, x_{D} x_{2}, x_{D} x_{3}, \ldots, x_{D}^{2}\right\rangle
$$

$$
\begin{align*}
\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{z})= & 1+x_{1} z_{1}+x_{2} z_{2}+\cdots+x_{D} z_{D}+x_{1}^{2} z_{1}^{2}+\cdots+x_{1} x_{D} z_{1} z_{D}+ \\
& \cdots+x_{D} x_{1} z_{D} z_{1}+x_{D} x_{2} z_{D} z_{2}+\cdots+x_{D}^{2} z_{D}^{2} \tag{9.2}\\
= & 1+2 \sum_{d} x_{d} z_{d}+\sum_{d} \sum_{e} x_{d} x_{e} z_{d} z_{e} \tag{9.3}\\
= & 1+2 \boldsymbol{x} \cdot \boldsymbol{z}+(\boldsymbol{x} \cdot \boldsymbol{z})^{2} \tag{9.4}\\
= & (1+\boldsymbol{x} \cdot \boldsymbol{z})^{2} \tag{9.5}
\end{align*}
$$

Kernels. Fornadik oefineo

Recall: Each kernel k has an associated feature mapping ϕ
ϕ takes input $\mathbf{x} \in \mathcal{X}$ (input space) and maps it to \mathcal{F} ("feature space")
Kernel $k(\mathbf{x}, \mathbf{z})$ takes two inputs and gives their similarity in \mathcal{F} space

$$
\begin{aligned}
& \phi: \mathcal{X} \rightarrow \mathcal{F} \\
& k \quad: \quad \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

\mathcal{F} needs to be a vector space with a dot product defined on it Also called a Hilbert Space

Kernels: Mercer's condition

- Can any function be used as a kernel function?
- No! it must satisfy Mercer's condition.

For k to be a kernel function

- There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
- The above is true if K is a positive definite function

$$
\int d \mathbf{x} \int d \mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z})>0 \quad \begin{aligned}
& \text { For all square } \\
& \text { integrable functions } f
\end{aligned}
$$

Kernels: Constructing combinations of kernels

Let k_{1}, k_{2} be two kernel functions then the following are as well

- $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$: direct sum
- $k(\mathbf{x}, \mathbf{z})=\alpha k_{1}(\mathbf{x}, \mathbf{z})$: scalar product
- $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) k_{2}(\mathbf{x}, \mathbf{z})$: direct product

Commonly Used Kernel Functions

Linear (trivial) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z} \text { (mapping function } \phi \text { is identity - no mapping) }
$$

Quadratic Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{2}
$$

Polynomial Kernel (of degree d):

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{d} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{d}
$$

Radial Basis Function (RBF) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\exp \left[-\gamma\|\mathbf{x}-\mathbf{z}\|^{2}\right]
$$

The Kernel Trick

- Rewrite learning algorithms so they only depend on dot products between two examples
- Replace dot product $\phi(\mathbf{x})^{\top} \phi(z)$ by kernel function $k(\mathbf{x}, \mathbf{z})$
which computes the dot product implicitly

"Kernelizing" the perceptron

- Naïve approach: let's explicitly train a perceptron in the new feature space

"Kernelizing" the perceptron

- Perceptron Representer Theorem
"During a run of the perceptron algorithm, the weight vector w can always be represented as a linear combination of the expanded training data"

Proof by induction
(in CIML)

"Kernelizing" the perceptron

- We can use the perceptron representer theorem to compute activations as a dot product between examples

$$
\begin{align*}
w \cdot \phi(x)+b & =\left(\sum_{n} \alpha_{n} \phi\left(x_{n}\right)\right) \cdot \phi(x)+b \quad \text { definition of } w \\
& =\sum_{n} \alpha_{n}\left[\phi\left(x_{n}\right) \cdot \phi(x)\right]+b \quad \text { dot products are linear } \tag{9.7}
\end{align*}
$$

"Kernelizing" the perceptron

Algorithm 29 KernelizedPerceptronTrain(D, MaxIter)

$\alpha \leftarrow 0, b \leftarrow 0 \quad / /$ initialize coefficients and bias
for iter $=1$. . MaxIter do
for all $\left(x_{n}, y_{n}\right) \in \mathbf{D}$ do
$a \leftarrow \sum_{m} \alpha_{m} \phi\left(x_{m}\right) \cdot \phi\left(x_{n}\right)+b \quad$ // compute activation for this example
if $y_{n} a \leq o$ then
$\alpha_{n} \leftarrow \alpha_{n}+y_{n}$
$b \leftarrow b+y$
// update coefficients
// update bias
end if
end for
end for
return α, b

- Same training algorithm, but doesn't explicitly refers to weights w anymore only depends on dot products between examples
- We can apply the kernel trick!

Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!
- How?
- By mapping data to higher dimensions where it exhibits linear patterns
- By rewriting linear models so that the mapping never needs to be explicitly computed

Discussion

- Other algorithms can be kernelized:
- See CIML for K-means
- We'll talk about Support Vector Machines next
- Do Kernels address all the downsides of "feature explosion"?
- Helps reduce computation cost during training
- But overfitting remains an issue

What you should know

- Kernel functions
- What they are, why they are useful, how they relate to feature combination
- Kernelized perceptron
- You should be able to derive it and implement it

