
Kernel Methods

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu

Slides credit: Piyush Rai

mailto:marine@cs.umd.edu

Beyond linear classification

• Problem: linear classifiers

– Easy to implement and easy to optimize

– But limited to linear decision boundaries

• What can we do about it?

– Last week: Neural networks

• Very expressive but harder to optimize (non-

convex objective)

– Today: Kernels

Kernel Methods

• Goal: keep advantages of linear models,

but make them capture non-linear

patterns in data!

• How?

– By mapping data to higher dimensions where

it exhibits linear patterns

Classifying non-linearly separable

data with a linear classifier: examples

Non-linearly

separable data in 1D

Becomes linearly

separable in new 2D

space

defined by the

following mapping:

Classifying non-linearly separable

data with a linear classifier: examples

Non-linearly

separable data in 2D

Becomes linearly separable in the 3D space

defined by the following transformation:

Defining feature mappings

• Map an original feature vector

to an expanded version

• Example: quadratic feature mapping represents feature

combinations

Feature Mappings

• Pros: can help turn non-linear classification

problem into linear problem

• Cons: “feature explosion” creates issues

when training linear classifier in new

feature space

– More computationally expensive to train

– More training examples needed to avoid

overfitting

Kernel Methods

• Goal: keep advantages of linear models,

but make them capture non-linear

patterns in data!

• How?

– By mapping data to higher dimensions where

it exhibits linear patterns

– By rewriting linear models so that the

mapping never needs to be explicitly

computed

The Kernel Trick

• Rewrite learning algorithms so they only depend

on dot products between two examples

• Replace dot product

by kernel function

which computes the dot product implicitly

Example of Kernel function

Another example of Kernel

Function (from CIML)

What is the function k(x,z) that
can implicitly compute the dot

product ?

Kernels: Formally defined

Kernels: Mercer’s condition

For all square

integrable functions f

• Can any function be used as a kernel function?

• No! it must satisfy Mercer’s condition.

Kernels: Constructing

combinations of kernels

Commonly Used Kernel Functions

The Kernel Trick

• Rewrite learning algorithms so they only depend

on dot products between two examples

• Replace dot product

by kernel function

which computes the dot product implicitly

“Kernelizing” the perceptron

• Naïve approach: let’s explicitly train a perceptron

in the new feature space

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm using

dot products between examples

“Kernelizing” the perceptron

• Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight

vector w can always be represented as a linear

combination of the expanded training data”

Proof by induction

(in CIML)

“Kernelizing” the perceptron

• We can use the perceptron representer theorem to

compute activations as a dot product between examples

“Kernelizing” the perceptron

• Same training algorithm, but
doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

• We can apply the kernel trick!

Kernel Methods

• Goal: keep advantages of linear models,

but make them capture non-linear

patterns in data!

• How?

– By mapping data to higher dimensions

where it exhibits linear patterns

– By rewriting linear models so that the

mapping never needs to be explicitly

computed

Discussion

• Other algorithms can be kernelized:

– See CIML for K-means

– We’ll talk about Support Vector Machines next

• Do Kernels address all the downsides of

“feature explosion”?

– Helps reduce computation cost during

training

– But overfitting remains an issue

What you should know

• Kernel functions

– What they are, why they are useful, how they relate to

feature combination

• Kernelized perceptron

– You should be able to derive it and implement it

