
Deep Learning

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu
Based on slides by Vlad Morariu

mailto:marine@cs.umd.edu


Standard Application of Machine 

Learning to Computer Vision

• Features: e.g., Scale Invariant Feature Transform(SIFT) 

• Classifiers: SVM, Random Forests, KNN, …

• Features are hand-crafted, not trained

– eventually limited by feature quality
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Cat image credit: https://raw.githubusercontent.com/BVLC/caffe/master/examples/images/cat.jpg



• Deep learning
– multiple layer neural networks

– learn features and classifiers directly (“end-to-end” 

training)

– breakthrough in Computer Vision, now in other AI areas

Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to 

document recognition.” Proceedings of the IEEE, 1998.
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Speech Recognition

Slide credit: Bohyung Han



Image Classification Performance

Image Classification Top-5 Errors (%)

Slide credit: Bohyung Han
Figure from: K. He, X. Zhang, S. Ren, J. Sun. “Deep Residual 

Learning for Image Recognition”. arXiv 2015. (slides)



Today’s lecture: key concepts

• Convolutional Neural Networks

• Revisiting Backpropagation and Gradient 

Descent for Deep Networks



Multi-Layer Perceptron (MLP)

Image source: http://cs231n.github.io/neural-networks-1/



Neural Networks Applied to Vision
LeCun, Y; Boser, B; Denker, J; Henderson, D; Howard, R; Hubbard, 
W; Jackel, L, “Backpropagation Applied to Handwritten Zip Code 
Recognition,” in Neural Computation, 1989

– USPS digit recognition, later check reading

– Convolution, pooling (“weight sharing”), fully connected layers

Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to 

document recognition.” Proceedings of the IEEE, 1998.



Architecture overview

Components:

– Convolution layers

– Pooling/Subsampling layers

– Fully connected layers

Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to 

document recognition.” Proceedings of the IEEE, 1998.



Convolutional Layer
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Slide credit: Fei-Fei Li, Andrej Karpathy, and Justin Johnson
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For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutional Layer

Slide credit: Fei-Fei Li, Andrej Karpathy, and Justin Johnson
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ConvNet is a sequence of Convolutional Layers, interspersed with activation 

functions
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ConvNet is a sequence of Convolutional Layers, interspersed with activation 

functions
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Rectified Linear Units (ReLU)

• Use rectified linear 

function instead of 

sigmoid

ReL(x) = max (0,x)

• Advantages

– Fast

– No vanishing gradients
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- makes the representations smaller and more manageable 

- operates over each activation map independently

Pooling Layer

Slide credit: Fei-Fei Li, Andrej Karpathy, and Justin Johnson
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Slide credit: Fei-Fei Li, Andrej Karpathy, and Justin Johnson
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[From recent 

Yann LeCun 

slides]

Convolutional filter visualization

Slide credit: Fei-Fei Li, Andrej Karpathy, and Justin Johnson
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example 5x5 filters
(32 total)

We call the layer convolutional 

because it is related to convolution 

of two signals:

elementwise multiplication 

and sum of a filter and the 

signal (image)

one filter => 

one activation map

Convolutional filter visualization

Slide credit: Fei-Fei Li, Andrej Karpathy, and Justin Johnson



Today’s lecture: key concepts

• Convolutional Neural Networks

• Revisiting Backpropagation and Gradient 

Descent for Deep Networks



Multi-Layer Perceptron (MLP)

Image source: http://cs231n.github.io/neural-networks-1/
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Chain rule: 



Single neuron training

𝜕𝐿

𝜕𝑤𝑖
= − 

𝑛

𝑥𝑖
𝑛  𝑦𝑛 1 −  𝑦𝑛 𝑦𝑛 −  𝑦𝑛 𝑖 = 1,… , 𝑑

for 𝑡 = 1, … , 𝑇

𝒘𝑡+1 = 𝒘𝑡 + 𝜟𝒘

 𝑦𝑛 = 𝑓 𝒙𝑛, 𝒘𝑡 𝑛 = 1,… ,𝑁

endfor

an epoch

Slide credit: Adapted from Bohyung Han



Multi-Layer: Backpropagation
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Backpropagation in practice

Two passes per iteration:

• Forward pass: compute value of loss 
function (and intermediate neurons) given 
inputs

• Backward pass: propagate gradient of loss 
(error) backwards through the network using 
the chain rule



Stochastic Gradient Descent (SGD)
• Update weights for each sample

• Minibatch SGD: Update weights for a small set of 
samples
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Slide credit: Bohyung Han



SGD improvements: Momentum

• Remember the previous direction
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+ Converge faster
+ Avoid oscillation

Slide credit: Bohyung Han



SGD improvements: Weight Decay

• Penalize the size of the weights
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+ Improve generalization a lot!

Slide credit: Bohyung Han



Key concepts

• Convolutional Neural Networks

• Revisiting Backpropagation and Gradient 

Descent for Deep Networks



History: NN Revival in the 1980’s

Backpropagation discovered in 1970’s but popularized in 1986

• David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams. “Learning 

representations by back-propagating errors.” In Nature, 1986.

MLP is a universal approximator

• Can approximate any non-linear function in theory, given enough 

neurons, data

• Kurt Hornik, Maxwell Stinchcombe, Halbert White. “Multilayer 

feedforward networks are universal approximators.” Neural Networks, 

1989

Generated lots of excitement and applications

35http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/



Neural Networks Applied to Vision

LeNet – vision application
– LeCun, Y; Boser, B; Denker, J; Henderson, D; Howard, R; Hubbard, 

W; Jackel, L, “Backpropagation Applied to Handwritten Zip Code 
Recognition,” in Neural Computation, 1989

– USPS digit recognition, later check reading

– Convolution, pooling (“weight sharing”), fully connected layers

Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to 

document recognition.” Proceedings of the IEEE, 1998.



Issues in Deep Neural Networks

• Prohibitive training time

– Especially with lots of training data

– Many epochs typically required for optimization

– Expensive gradient computations

• Overfitting

– Learned function fits training data well, but 

performs poorly on new data (high capacity 

model, not enough training data)

Slide credit: adapted from Bohyung Han



Issues in Deep Neural Networks

Vanishing gradient problem

– Gradients in the lower layers are typically 
extremely small

– Optimizing multi-layer neural networks takes 
huge amount of time
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New “winter” and revival in early 2000’s

New “winter” in the early 2000’s due to

• problems with training NNs

• Support Vector Machines (SVMs), Random Forests (RF) – easy 

to train, nice theory

Revival again by 2011-2012

• Name change (“neural networks” -> “deep learning”)

• + Algorithmic developments

– unsupervised layer-wise pre-training

– ReLU, dropout, layer normalizatoin

• + Big data + GPU computing = 

• Large outperformance on many datasets (Vision: ILSVRC’12)

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/



Big Data
• ImageNet Large Scale Visual Recognition Challenge

– 1000 categories w/ 1000 images per category

– 1.2 million training images, 50,000 validation, 150,000 testing

40O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.



AlexNet Architecture

60 million parameters!

Various tricks

• ReLU nonlinearity

• Overlapping pooling

• Local response normalization

• Dropout – set hidden neuron output to 0 with probability .5

• Data augmentation

• Training on GPUs

Alex Krizhevsky, Ilya Sutskeyer, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.

Figure credit: Krizhevsky et al, NIPS 2012.



GPU Computing

• Big data and big models require lots of 

computational power

• GPUs

– thousands of cores for parallel operations

– multiple GPUs

– still took about 5-6 days to train AlexNet on 

two NVIDIA GTX 580 3GB GPUs (much faster 

today)



Recurrent Neural Networks

Networks with loops

• The output of a layer is used as input for 

the same (or lower) layer

• Can model dynamics (e.g. in space or time)

Image credit: Chritopher Olah’s blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sepp Hochreiter (1991), Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis. Institut f. 

Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber.

Y. Bengio, P. Simard, P. Frasconi. Learning Long-Term Dependencies with Gradient Descent is Difficult. In TNN 

1994.



Recurrent Neural Networks

Let’s unroll the loops

• Now a standard feed-forward network with 

many layers

• Suffers from vanishing gradient problem

• In theory, can learn long term memory, in 

practice not (Bengio et al, 1994)

Image credit: Chritopher Olah’s blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sepp Hochreiter (1991), Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis. Institut f. 

Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber.

Y. Bengio, P. Simard, P. Frasconi. Learning Long-Term Dependencies with Gradient Descent is Difficult. In TNN 

1994.



Long Short Term Memory (LSTM)

• A type of RNN explicitly designed not to have the 
vanishing or exploding gradient problem

• Models long-term dependencies

• Memory is propagated and accessed by gates

• Used for speech recognition, language modeling …

Hochreiter, Sepp; and Schmidhuber, Jürgen. “Long Short-Term Memory.” Neural Computation, 1997.

Image credit: Christopher Colah’s blog,  http://colah.github.io/posts/2015-08-Understanding-

LSTMs/



Unsupervised Neural Networks

Autoencoders

• Encode then decode the 

same input

• No supervision needed

input x

hidden layer

output x’

H. Bourlard and Y. Kamp. 1988. Auto-association by multilayer perceptrons and singular value decomposition.

Biol. Cybern. 59, 4-5 (September 1988), 291-294.


