1 Introduction

In this project, you will implement RubeVM, a virtual machine for a simple bytecode language. Later in the semester, you will compile Rube (a simplified Ruby) source code into RubeVM bytecode.

2 RubeVM Fundamentals

Figure 1 defines what the RubeVM instructions are, what values they manipulate, and provides some definitions that will be useful for the operational semantics. We'll discuss the figure from top to bottom.

RubeVM is a register-based machine, where registers \(r \) are simply numbered starting from 0. We assume there is an unbounded number of registers. Registers contain values \(v \). The first two kinds of values are integers \(n \) (e.g., 0, 1, 10, -42, etc) and strings \(s \). Values also include identifiers \(id \). When an identifier is stored in a register, we treat it as a pointer to the function of that name (more on functions later). We also use identifiers to refer to global variables (but an identifier in a register is always a function pointer). Lastly, values include locations \(\ell \), which are pointers to tables, which are stored in the heap. A table \(t \) is a mapping from values to values.

There are many different kinds of RubeVM instructions \(i \). We'll discuss the semantics of each instruction in detail below. For now, just observe there are several groups of instructions: Basics (loading constants, moving values); arithmetic and comparisons; branching; global variable access; table manipulation; and function calls.

A RubeVM program \(P \) is a mapping from function names \((id) \) to function bodies \(F \), which themselves are mappings from program counters \((pc) \) to instructions. For example, if \(P \) is a program with some function \(f \), then \(P(f)(0) \) is the first instruction in function \(f \). Note that program counters are just natural numbers, but we write them as \(pc \) as a reminder of what they’re used for.

When a program runs, it may update the heap \(H \). The heap stores two kinds of mappings in it: locations \(\ell \) are mapped to tables \(t \), and global variable names \(id \) are mapped to values \(v \). In other words, if \(H \) is a heap and \(\ell \in \text{dom}(H) \) (\(\ell \) is in the domain of \(H \), i.e., there is a mapping for \(\ell \) in \(H \)), then \(H(\ell) \) will be a table. Similarly, if \(H \) is a heap and \(id \in \text{dom}(H) \), then \(H(id) \) will be a value. Tables are not values because they are mutable in RubeVM.

As RubeVM executes a function, that function may access a register file \(R \), which is just a mapping from register numbers to values. In RubeVM, each function invocation has its own local registers that are disjoint with any other function invocation, i.e., the registers are local variables.

Finally, as RubeVM executes, there will be function calls and returns. To handle these, RubeVM maintains a stack \(S \). Each stack frame has the form \((id, pc, R)\), where \(id \) is the name of the function, \(pc \) is the program counter, and \(R \) is the register file. The stack is a sequence of stack frames, separated with ::, with the top-most frame on the left.

3 RubeVM Operational Semantics

We'll describe the operational semantics as a small-step semantics over machine states \((H, S)\), where \(H \) is the heap and \(S \) is the stack. Figure 2 gives the operational semantics rules. The column “Reduction” defines judgments of the form \(P \vdash (H, S) \rightarrow (H', S') \), meaning that one step of execution of program \(P \) with heap \(H \) and stack \(S \) yields a new heap \(H' \) and new stack \(S' \). Recall the current function is always on the left of the stack. Hence in the rules we almost always write the configuration pattern as \((H,(id,pc,R)::S)\), to indicate a state with heap \(H \), current function \(id \), current program counter \(pc \), current registers \(R \), and remainder of the stack \(S \).
The column “$P(id)(pc)$” indicates what the instruction in the current function id at the current program counter pc must be for this rule to apply. Finally, the “Side conditions” column indicates other conditions that must be true for this rule to apply. If we wrote these rules correctly, at most one reduction rule should be possible in any state. It’s also possible no rule may apply, in which case the machine gets stuck.

Next we step through the semantics, from top to bottom.

\texttt{const r,v} Yields a new state that is the same as the old state, except the program counter in the current stack frame has been incremented by one, and the register file has been updated so that r now maps to v.

Note that this may either mean r is newly added to R, or it may be updated. Notice that in addition
<table>
<thead>
<tr>
<th>Rule</th>
<th>Reduction</th>
<th>Side conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P \vdash \langle H, (id, pc, R) :: S \rangle)</td>
<td>(\langle H, (id, pc + 1, R[r \mapsto v]) :: S \rangle)</td>
<td>(P(id(pc)) = \text{const } r, v)</td>
</tr>
<tr>
<td>(P \vdash \langle H, (id, pc, R) :: S \rangle)</td>
<td>(\langle H, (id, pc + 1, R[r_1 \mapsto v_2]) :: S \rangle)</td>
<td>(R(r_2) = v)</td>
</tr>
</tbody>
</table>
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto n_1 + n_2]) :: S \rangle \) | \(add \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto n_1 - n_2]) :: S \rangle \) | \(sub \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto n_1 \times n_2]) :: S \rangle \) | \(mul \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto n_1 / n_2]) :: S \rangle \) | \(div \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 1]) :: S \rangle \) | \(eq \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 0]) :: S \rangle \) | \(eq \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 1]) :: S \rangle \) | \(lt \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 0]) :: S \rangle \) | \(leq \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 1]) :: S \rangle \) | \(leq \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 0]) :: S \rangle \) | \(leq \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 1]) :: S \rangle \) | \(is_{\text{int}} \ r_1, r_2 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 0]) :: S \rangle \) | \(\exists n. R(r_2) = n \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 1]) :: S \rangle \) | \(\exists n. R(r_2) = n \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 0]) :: S \rangle \) | \(\exists s. R(r_2) = s \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 1]) :: S \rangle \) | \(\exists i. R(r_2) = i \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 0]) :: S \rangle \) | \(\exists i. R(r_2) = i \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r_1 \mapsto 1]) :: S \rangle \) | \(\text{jmp } n \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R) :: S \rangle \) | \(\text{if zero } r, n \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R) :: S \rangle \) | \(\text{if zero } r, n \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r \mapsto v]) :: S \rangle \) | \(\text{rd}_{\text{glob}} r, id_2 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R) :: S \rangle \) | \(\text{wr}_{\text{glob}} id_2, r \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H[id_2 \mapsto v], (id, pc + 1, R) :: S \rangle \) | \(\text{mk}_{\text{tab}} r \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H[l \mapsto \{\}], (id, pc + 1, R[r \mapsto \ell]) :: S \rangle \) | \(\ell \notin \text{dom}(H) \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H[l \mapsto H(l)[v \mapsto v']], (id, pc + 1, R) :: S \rangle \) | \(\text{rd}_{\text{tab}} \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r \mapsto \ell]) :: S \rangle \) | \(\text{wr}_{\text{tab}} \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r \mapsto 0]) :: S \rangle \) | \(\text{has}_{\text{tab}} \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R) :: S \rangle \) | \(\langle H, (id, pc + 1, R[r \mapsto 0]) :: S \rangle \) | \(\text{has}_{\text{tab}} \ r_1, r_2, r_3 \)
| \(P \vdash \langle H, (id, pc, R_1) :: S \rangle \) | \(\langle H, (id_2, 0, R_2) :: (id, pc, R_1) :: S \rangle \) | \(\text{call } r, n_1, n_2 \)
| \(P \vdash \langle H, (id, pc, R_1) :: (id_2, pc_2, R_2) :: S \rangle \) | \(\langle H, (id_2, pc_2 + 1, R_2[n_1 \mapsto v]) :: S \rangle \) | \(R_1(r) = id_2 \land R_2 = [0 \mapsto R_1(n_1)], \ldots, n_2 - n_1 \mapsto R_1(n_2) \land R_1(r) = v \land P(id_2)(pc_2) = \text{call } r', n_1, n_2 \)

Figure 2: Operational Semantics
mov \ r_1, \ r_2 \ \ \text{Stores the value} \ v \ \text{associated with} \ \ r_2 \ \text{in the current register file in the register} \ \ r_1.

add \ r_1, \ r_2, \ r_3 \ \ \text{Updates} \ r_1 \ \text{to contain the sum of the integers in} \ r_2 \ \text{and} \ r_3. \ \text{Notice no behavior for this instruction is defined if} \ r_2 \ \text{or} \ r_3 \ \text{does not contain an integer.}

\text{sub} \ , \ \text{mul} \ , \ \text{div} \ \ \text{Similar to} \ \text{add}.

eq \ r_1, \ r_2, \ r_3 \ \ \text{Stores} \ 1 \ \text{in} \ r_1 \ \text{if} \ r_2 \ \text{and} \ r_3 \ \text{both contain the same value, or} \ 0 \ \text{if they contain different values. Notice this instruction can compare any values (integers, strings, identifiers, or locations).}

\text{lt} \ , \ \text{leq} \ \ \text{Similar to} \ \text{eq} \ , \ \text{but only allows integer comparisons.}

\text{is_int} \ r_1, \ r_2 \ \ \text{stores} \ 1 \ \text{in} \ r_1 \ \text{if} \ r_2 \ \text{contains an integer or} \ 0 \ \text{otherwise.}

\text{is_str} \ r_1, \ r_2 \ \ \text{stores} \ 1 \ \text{in} \ r_1 \ \text{if} \ r_2 \ \text{contains a string or} \ 0 \ \text{otherwise.}

\text{is_tab} \ r_1, \ r_2 \ \ \text{stores} \ 1 \ \text{in} \ r_1 \ \text{if} \ r_2 \ \text{contains a table or} \ 0 \ \text{otherwise.}

\text{jmp} \ n \ \ \text{Unconditionally updates the program counter to} \ \text{the previous program counter plus} \ n + 1. \ \text{Since} \ n \ \text{is an integer, it may be negative to jump to an earlier instruction in the function. (The extra plus one here seems to be standard on VMs and CPUs.) Jumping outside the pc range of the current function is an error.}

\text{if_zero} \ r, \ n \ \ \text{Adds} \ n + 1 \ \text{to the previous program counter if} \ r \ \text{contains zero, otherwise “falls through” to the next instruction by adding one to the program counter. Note that it is allowed for} \ R(r) \ \text{to not be an integer—that case will always fall through, however.}

\text{rd_glob} \ r, \ id_2 \ \ \text{Stores the value} \ v \ \text{mapped to} \ id_2 \ \text{in the heap into} \ r.

\text{wr_glob} \ id_2, \ r \ \ \text{Stores the contents of} \ r \ \text{into the mapping for} \ id_2 \ \text{in the heap.}

\text{mk_tab} \ r \ \ \text{Generates a fresh location} \ \ell \ \text{that is not already mapped in the heap; updates the heap to map} \ \ell \ \text{to an empty table; and updates} \ r \ \text{to contain} \ \ell.

\text{rd_tab} \ r_1, \ r_2, \ r_3 \ \ \text{Looks up the value} \ v \ \text{stored in} \ r_3 \ \text{in the table whose location} \ \ell \ \text{is stored in} \ r_2, \ \text{and stores the corresponding value} \ v' \ \text{into} \ r_1. \ \text{Note this rule is undefined if} \ v \ \text{is not a key in the table.}

\text{wr_tab} \ r_1, \ r_2, \ r_3 \ \ \text{Updates the table whose location} \ \ell \ \text{is indicated by} \ r_1 \ \text{so that the value} \ v \ \text{stored in} \ r_2 \ \text{is mapped to the value} \ v' \ \text{stored in} \ r_3. \ \text{This may cause either a new mapping to be added if there was none previously, or the previous mapping to be replaced.}

\text{has_tab} \ r_1, \ r_2, \ r_3 \ \ \text{Writes} \ 1 \ \text{into} \ r_1 \ \text{if the table whose location} \ \ell \ \text{is indicated by} \ r_2 \ \text{has a mapping for key} \ r_3. \ \text{Otherwise writes} \ 0 \ \text{into} \ r_1.

call \ r, n_1, n_2 \ \ \text{The register} \ r \ \text{must contain an} \ id_2 \ \text{that names a function in the program. Note there is no check here that} \ id_2 \ \text{must be a valid function name, but if it is not, the semantics will get stuck in the next step. A new register file} \ R_2 \ \text{is created and initialized with the contents of the current stack frame’s registers} \ n_1 \ \text{through} \ n_2, \ \text{offset so} \ R(n_1) \ \text{is in register} \ 0, \ R(n_1 + 1) \ \text{is in register} \ 1, \ \text{etc. If} \ n_2 < n_1, \ \text{the new register file} \ R_2 \ \text{is empty by definition. Then a new stack frame is pushed onto the stack, with the callee function name} \ id_2, \ \text{the initial program counter} \ 0, \ \text{and the initial register file} \ R_2. \ \text{Thus, in the next step execution will continue inside of} \ id_2.

\text{ret} \ r \ \ \text{Pops the current stack frame off the stack, incrementing the caller stack frame’s program counter by one. Also copies the value} \ v \ \text{in register} \ r \ \text{to the register} \ n_1 \ \text{in the caller’s stack frame, where} \ n_1 \ \text{is the initial register indicated in the call instruction that created the current stack frame.}

\text{halt} \ r \ \ \text{Stops execution of the virtual machine (hence there is no semantics rule for it). This will turn out to be useful for your compiler. In the implementation, the contents of the register passed} \ \text{halt} \ \text{is printed (but this is not part of the formal semantics).}
In addition, if any instruction tries to access a register that doesn’t exist (i.e., that has not yet been written), that is undefined and should cause the virtual machine to raise an exception.

Finally, to run a program from scratch, we start executing the main function of the program, with the program counter at 0, an empty register file, and an empty heap. Thus, the initial configuration for program P is

$$\langle \emptyset , (\text{main} , 0 , \emptyset)::\emptyset \rangle$$

The program exits when main returns. That is, when a program reaches a configuration

$$\langle H , (\text{main} , pc , R)::\emptyset \rangle$$

and $P(\text{main})(pc) = \text{ret } r$. The value returned from the program is $R(r)$.

(Note it is an error if main, or any other function, runs out of instructions before returning.)

4 Core Implementation in OCaml

Your job is to implement the operational semantics in OCaml. Figure 3 shows a translation of (most of) Figure 1 into OCaml. Registers, values, and identifiers are given by types reg, value, and id. Notice there is
overlap between value and id. Also notice we have arbitrarily decided to represent locations as integers, and that we have not given you a representation of tables—that choice is up to you. When you do add tables to the set of values, do not modify the other constructors. For debugging purposes, you will probably want to add the capability of printing out table values; you’ll want to modify Disassembler.value to do that (just follow the pattern).

The middle part of the figure shows the instructions. Finally, the bottom part of the figure defines types for a function body (an array of instructions), the program (an associative list mapping function names to their bodies), the heap (a mapping from values to values), registers (a mapping from register numbers to values), the stack (a list of stack frames containing the function name, program counter, and registers), and the configuration (a pair of heap and stack).

You must implement the following functions in the file rubevm.ml (the first couple are just warmups, and you may or may not use them in the last two functions):

- max_regs : prog → string → int takes a program and the name of a function in the program, and returns the highest numbered register accessed within the body of the function.
- current_inst : prog → config → instr takes a program and a configuration, and returns the next instruction to be executed (i.e., the instruction that run_inst would execute if it were called).
- run_inst : prog → config → config takes a program and a current configuration, and executes the next instruction, yielding a new configuration. This function should raise an exception (of your choice) if the program attempts to do anything that is erroneous in the semantics, i.e., if there is no reduction rule for that case. Some example erroneous cases are adding two strings, “calling” an integer as a function, reading a non-existent key in a table, etc. This function should also raise an exception if is asked to execute a halt instruction.
- run_prog : prog → prog_ret runs a program, starting in the initial configuration (as defined above), until either main returns or the program halts. In the first case, the function should return 'Reg v where v is the value returned by main. In the second case, the function should return 'Halt v where v is the contents of the register passed to halt.

To help make it a bit easier to write RubeVM programs, we’ve provided you with an assembler. Once you have a working prototype, you can run a program from scratch as ./main.byte file, where file is the name of a file containing rubevm assembly code. For an example of a program in this format, see r1.rubevm, which doesn’t do anything interesting but does include every possible instruction. After a program is executed, rubevm prints the value returned from running the program.

5 Foreign Functions

The interpreter above is theoretically useful, but programs are still limited in practical terms. For example, there’s no way to do I/O within the language. To solve this problem, you must extend your interpreter to perform special handling of certain foreign function calls. In RubeVM, foreign function calls look just like normal calls (they are invoked with the call instruction as usual), but the interpreter intercepts them and performs special operations that are written in OCaml rather than in RubeVM code. You must implement the following foreign functions:

- print_string(s) . Prints string s to standard output. This function should print s as-is, e.g., it does not print a newline after the string. Returns the string that was printed.
- print_int(n) . Prints integer n to standard output (again without anything else, e.g., without adding a newline). Returns the integer (not its string representation) that was printed.
• to_s(v). If v is a string, the string is returned as-is. If v is an integer, converts the integer to a string and returns that string. If v is an identifier, returns the string Function<id>, where id is the name of the function. Note there should be no extra spaces added, e.g., if foo is the id, then to_s would return Function<foo> and not Function <foo> or Function< foo > etc.

• to_i(v). If v is an integer, returns the integer as-is. If v is a string, converts the string to an integer and returns that. Your implementation may do whatever you choose if v is a string that contains characters other than digits and a possible initial minus sign.

• concat(s1, s2). Returns the concatenation of strings s1 and s2.

• length(s). Returns the length of string s.

• size(t). Returns the number of key-value pairs in table t. (Note t is really a “pointer to a table” in the internal RubeVM representation.)

• iter(t, f, x). Calls function f (which in the semantics will be an id) once on each key-value pair in table t, passing x as a third argument. For example, if k maps to v in the table, the function f will be called as f(k,v,x). The iteration order is unspecified (any order is fine). The iter function always returns 0.

In all cases, your implementation must abort with an exception (whichever exception you prefer) if a foreign function is called with the wrong types of arguments. Since there are quite a few foreign functions to implement, it would probably be a good idea to design your interpreter to make it easy to add new foreign functions.

Also, if the bytecode defines a function with the same name as a foreign function, then the bytecode function takes precedence. For example, if the program defines to_i, then calling to_i should jump to the program’s function, not the foreign function.

Academic Integrity

The Campus Senate has adopted a policy asking students to include the following statement on each assignment in every course: “I pledge on my honor that I have not given or received any unauthorized assistance on this assignment.” Consequently your program is requested to contain this pledge in a comment near the top.

Please carefully read the academic honesty section of the course syllabus. Any evidence of impermissible cooperation on projects, use of disallowed materials or resources, or unauthorized use of computer accounts, will be submitted to the Student Honor Council, which could result in an XF for the course, or suspension or expulsion from the University. Be sure you understand what you are and what you are not permitted to do in regards to academic integrity when it comes to project assignments. These policies apply to all students, and the Student Honor Council does not consider lack of knowledge of the policies to be a defense for violating them. Full information is found in the course syllabus—please review it at this time.