CMSC 430
Introduction to Compilers
Spring 2016

Operational Semantics
Syntax vs. semantics

• Syntax = grammatical structure
• Semantics = underlying meaning

• Sentences in a language can be syntactically well-formed but semantically meaningless
 ▪ if (“foo” > 37) { oogbooga(3); “baz” * “qux”; }

• ocamlllex and ocamlyacc enforce syntax
 ▪ (Though could play tricks in actions to check semantics)
Syntax vs. semantics (cont’d)

• General principle: enforce correctness at the earliest stage possible
 ▪ Keywords identified in lexer
 ▪ Balanced ()’s enforced in parser
 ▪ Types enforced afterward

• Why?
 ▪ Earlier in pipeline ⇒ simpler to think about
 ▪ Reporting errors is easier
 - Less transformation from original program
 - Errors may be easier to localize
 ▪ Faster algorithms for detecting violations
 - Higher chance could employ them interactively in IDE
Detour: Natural deduction

• We are going to use *natural deduction* rules to describe semantics
 ▪ So we need to understand how those work first

• Natural deduction rules provide a syntax for writing down proofs
 ▪ Each rule is essentially an axiom
 ▪ Rules are composed together
 - The result is called a *derivation*
 ▪ The things rules prove are called *judgments*
Structure of a rule

- H1 ... Hn are hypotheses, C is the conclusion
- “If H1 and H2 and ... and Hn hold, then C holds”
IMP: A language of commands

\[a ::= n | X | a0+a1 | a0-a1 | a0\times a1 \]
\[b ::= bv | a0=a1 | a0\leq a1 | \neg b | b0 \land b1 | b0 \lor b1 \]
\[c ::= \text{skip} | X:=a | c0; c1 | \text{if} \ b \ \text{then} \ c0 \ \text{else} \ c1 | \text{while} \ b \ \text{do} \ c \]

- \(n \in \mathbb{N} \) = integers, \(X \in \text{Var} = \) variables, \(bv \in \text{Bool} = \{\text{true, false}\} \)
- This is a typical way of presenting a language
 - Notice grammar is for ASTs
 - Not concerned about issues like ambiguity, associativity, precedence
- Syntax stratified into commands (\(c \)) and expressions (\(a,b \))
 - Expressions have no side effects
- No function calls (and no higher order functions)
- So: How do we specify the semantics of IMP?
Program state

• IMP contains imperative updates, so we need to model the program state
 ▪ Here the state is simply the integer value of each variable
 ▪ (Notice can’t assign a boolean to a variable, by syntax!)

• State:
 ▪ $\sigma : \text{Var} \rightarrow \mathbb{N}$
 ▪ A state σ is a mapping from variables to their values
Judgments

• Operational semantics has three kinds of judgments
 ■ \(\langle a, \sigma \rangle \rightarrow n \)
 - In state \(\sigma \), arithmetic expression \(a \) evaluates to \(n \)
 ■ \(\langle b, \sigma \rangle \rightarrow \text{bv} \)
 - In state \(\sigma \), boolean expression \(b \) evaluates to true or false
 ■ \(\langle c, \sigma \rangle \rightarrow \sigma' \)
 - Running command \(c \) in state \(\sigma \) produces state \(\sigma' \)

• Can immediately see only commands have side effects
 ■ Only form whose evaluation produces a new state
 ■ Commands also do not return values
 ■ Note this is math, so we express state changes by creating the new state \(\sigma' \). We can’t just “mutate” \(\sigma \).
Arithmetic evaluation

\[\langle n, \sigma \rangle \rightarrow n \]
\[\langle X, \sigma \rangle \rightarrow \sigma(X) \]

\[\langle a_0, \sigma \rangle \rightarrow n_0 \]
\[\langle a_1, \sigma \rangle \rightarrow n_1 \]
\[\langle a_0 + a_1, \sigma \rangle \rightarrow n_0 + n_1 \]

\[\langle a_0, \sigma \rangle \rightarrow n_0 \]
\[\langle a_1, \sigma \rangle \rightarrow n_1 \]
\[\langle a_0 - a_1, \sigma \rangle \rightarrow n_0 - n_1 \]

\[\langle a_0 \times a_1, \sigma \rangle \rightarrow n_0 \times n_1 \]
Arithmetic evaluation (cont’d)

• Notes:
 ▪ Rule for variables only defined if X is in $\text{dom}(\sigma)$. Otherwise the program goes wrong, i.e., it has no meaning
 ▪ Hypotheses of last three rules stacked to save space
 ▪ Notice difference between syntactic operators, on the left side of arrows, and mathematical operators, on the right side of arrows
 ▪ One rule for each kind of expression
 - These are syntax-directed rules
 ▪ In the rules, we use terminals and non-terminals in the grammar to stand for anything producible from them
 - E.g., n stands for any integer; σ for any state; etc.
 ▪ Order of evaluation irrelevant, because there are no side effects
Sample derivation

• $1+2+3$

• $(2\times x)-4$ in $\sigma = [x \mapsto 3]$
(* a ::= n | X | a0+a1 | a0-a1 | a0×a1 *)

```ocaml
type aexpr =
| AInt of int
| AVar of string
| APlus of aexpr * aexpr
| AMinus of aexpr * aexpr
| ATimes of aexpr * aexpr

let rec aeval sigma = function
| AInt n -> n
| AVar n -> List.assoc n sigma
| APlus (a1, a2) -> (aeval sigma a1) + (aeval sigma a2)
| AMinus (a1, a2) -> (aeval sigma a1) - (aeval sigma a2)
| ATimes (a1, a2) -> (aeval sigma a1) * (aeval sigma a2)
```
Boolean evaluation

\[
\begin{array}{c}
\langle \text{true}, \sigma \rangle \rightarrow \text{true} \\
\langle \text{false}, \sigma \rangle \rightarrow \text{false} \\
\langle \neg b, \sigma \rangle \rightarrow \neg \text{bv}
\end{array}
\]

\[
\begin{array}{c}
\langle a_0, \sigma \rangle \rightarrow n_0 \\
\langle a_1, \sigma \rangle \rightarrow n_1 \\
\langle a_0 = a_1, \sigma \rangle \rightarrow n_0 = n_1 \\
\langle a_0 \leq a_1, \sigma \rangle \rightarrow n_0 \leq n_1 \\
\langle b_0, \sigma \rangle \rightarrow \text{bv}_0 \\
\langle b_1, \sigma \rangle \rightarrow \text{bv}_1 \\
\langle b_0 \land b_1, \sigma \rangle \rightarrow \text{bv}_0 \land \text{bv}_1 \\
\langle b_0 \lor b_1, \sigma \rangle \rightarrow \text{bv}_0 \lor \text{bv}_1
\end{array}
\]
Sample derivations

• \(\neg \)false \(\land \) true

• \(2 \leq X \lor X \leq 4 \) in \(\sigma = [X \mapsto 3] \)
Correspondence to OCaml

(* b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1 *)

type bexpr =
| BV of bool
| BEq of aexpr * aexpr
| BLeq of aexpr * aexpr
| BNot of bexpr
| BAnd of bexpr * bexpr
| BOr of bexpr * bexpr

let rec beval sigma = function
| BV b -> b
| BEq (a1, a2) -> (aeval sigma a1) = (aeval sigma a2)
| BLeq (a1, a2) -> (aeval sigma a1) <= (aeval sigma a2)
| BNot b -> not (beval sigma b)
| BAnd (b1, b2) -> (beval sigma b1) && (beval sigma b2)
| BOr (b1, b2) -> (beval sigma b1) || (beval sigma b2)
Command evaluation

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle \text{skip, } \sigma \rangle \rightarrow \sigma</td>
<td>\langle \text{c0, } \sigma \rangle \rightarrow \sigma_0</td>
</tr>
<tr>
<td>\langle \text{a, } \sigma \rangle \rightarrow \text{n}</td>
<td>\langle \text{c1, } \sigma_0 \rangle \rightarrow \sigma_1</td>
</tr>
<tr>
<td>\langle \text{X:=a, } \sigma \rangle \rightarrow \sigma[\text{X}\mapsto\text{n}]</td>
<td>\langle \text{c0; c1, } \sigma \rangle \rightarrow \sigma_1</td>
</tr>
</tbody>
</table>

- Here \(\sigma[\text{X}\mapsto\text{a}] \) is the state that is the same as \(\sigma \), except \(\text{X} \) now maps to \(\text{a} \)
 - \((\sigma[\text{X}\mapsto\text{a}])(\text{X}) = \text{a} \)
 - \((\sigma[\text{X}\mapsto\text{a}])(\text{Y}) = \sigma(\text{Y}) \quad \text{X} \neq \text{Y} \)
- Notice order of evaluation explicit in sequence rule
Command evaluation (cont’d)

- Two rules for conditional
 - Just like in logic we needed two rules for \land-E and \lor-I
 - Notice we specify only one command is executed

\[
\begin{align*}
\langle b, \sigma \rangle &\rightarrow \text{true} \quad \langle c_0, \sigma \rangle &\rightarrow \sigma_0 \\
\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle &\rightarrow \sigma_0 \\
\langle b, \sigma \rangle &\rightarrow \text{false} \quad \langle c_1, \sigma \rangle &\rightarrow \sigma_1 \\
\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle &\rightarrow \sigma_1
\end{align*}
\]
Command evaluation (cont’d)

\[
\begin{align*}
\langle b, \sigma \rangle & \rightarrow \text{false} \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \rightarrow \sigma \\
\langle b, \sigma \rangle & \rightarrow \text{true} \\
\langle c; \text{ while } b \text{ do } c, \sigma \rangle & \rightarrow \sigma' \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \rightarrow \sigma'
\end{align*}
\]
Sample derivations

• $n:=3; f:=1; \text{ while } n \geq 1 \text{ do } f := f \times n; n := n - 1$
Correspondence to OCaml

(* c ::= skip | X:=a | c0;c1 | if b then c0 else c1 | while b do c *)

type cmd =
| CSkip
| CAssn of string * aexpr
| CSeq of cmd * cmd
| CIf of bexpr * cmd * cmd
| CWhile of bexpr * cmd

let rec ceval sigma = function
| CSkip -> sigma
| CAssn (x, a) -> (x:(aeval sigma a))::sigma
(* note List.assoc in aeval stops at first match *)
| CSeq (c0, c1) ->
 let sigma0 = ceval sigma c0 in ceval sigma0 c1
(* or “ceval (ceval sigma c0) c1” *)
| CIf (b, c0, c1) ->
 if (beval sigma b) then (ceval sigma c0)
 else (ceval sigma c1)
| CWhile (b, c) ->
 if (beval sigma b)
 then ceval sigma (CSeq (c, CWhile(b,c)))
 else sigma
Big-step semantics

• Semantics given are “big step” or “natural semantics”
 - E.g., \(\langle c, \sigma \rangle \rightarrow \sigma' \)
 - Commands fully evaluated to produce the final output state, in one, big step

• Limitation: Can’t give semantics to non-terminating programs
 - We would need to work with infinite derivations, which is typically not valid
 - (Note: It is possible, though, using a co-inductive interpretation)
Small-step semantics

- Instead, can expose intermediate steps of computation
 - $a \rightarrow_{\sigma} a'$
 - Evaluating a one step in state σ produces a'
 - $b \rightarrow_{\sigma} b'$
 - Evaluating b one step in state σ produces b'
 - $\langle c, \sigma \rangle \rightarrow_{1} \langle c', \sigma' \rangle$
 - Running command c in state σ for one step yields a new command c' and new state σ'

- Note putting σ on the arrow is just a convenience
 - Good notation for stringing evaluations together
 - $a_0 \rightarrow_{\sigma} a_1 \rightarrow_{\sigma} a_2 \rightarrow_{\sigma} \ldots$
 - Put 1 on arrow for commands just to let us distinguish different kinds of arrows
Small-step rules for arithmetic

\[X \rightarrow_{\sigma} \sigma(X) \]

\[a_0 \rightarrow_{\sigma} a'_0 \]
\[a_0 + a_1 \rightarrow_{\sigma} a'_0 + a_1 \]

\[a_1 \rightarrow_{\sigma} a'_1 \]
\[n + a_1 \rightarrow_{\sigma} n + a'_1 \]

\[p = m + n \]
\[n + m \rightarrow_{\sigma} p \]

- Similarly for - and \(\times \)
- Notice no rule for evaluating integer \(n \)
 - An integer is in normal form, meaning no further evaluation is possible
- We’ve fixed the order of evaluation
 - Could also have made it non-deterministic
Context rules

- We have some rules that do the “real” work
 - The rest are *context rules* that define order of evaluation
- Cool trick (due to Hieb and Felleisen):
 - Define a *context* as a term with a “hole” in it
 - \(C ::= □ | C+a | n+C | C-a | n-C | C\times a | n\times C \)
 - Notice the terms generated by this grammar always have exactly one □, and it always appears at the next position that can be evaluated
 - Define \(C[a] \) to be \(C \) where □ is replaced by \(a \)
 - Ex: \(((□+3) \times 5)[4] = (4+3) \times 5 \)
 - Now add one, single context rule:
 \[
 \begin{align*}
 a & \rightarrow_σ a' \\
 C[a] & \rightarrow_σ C[a']
 \end{align*}
 \]
Small-step rules for booleans

• Very similar to arithmetic expressions
 ▪ Too boring to write them all down...
Small-step rules for commands

- Let’s define contexts, to get that out of the way
 - $C ::= \square \mid X:=C \mid C;c1 \mid \text{if } C \text{ then } c0 \text{ else } c1 \mid \text{while } C \text{ do } c$

- Now the rules (plus the context rule):

<table>
<thead>
<tr>
<th>Expression</th>
<th>Rule (\rightarrow_1)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle X:=n, \sigma \rangle)</td>
<td></td>
<td>(\langle \text{skip, } \sigma[x\mapsto n] \rangle)</td>
</tr>
<tr>
<td>(\langle \text{skip; } c1, \sigma \rangle)</td>
<td></td>
<td>(\langle c1, \sigma \rangle)</td>
</tr>
<tr>
<td>(\langle \text{if true then } c0 \text{ else } c1, \sigma \rangle)</td>
<td></td>
<td>(\langle c0, \sigma \rangle)</td>
</tr>
<tr>
<td>(\langle \text{if false then } c0 \text{ else } c1, \sigma \rangle)</td>
<td></td>
<td>(\langle c1, \sigma \rangle)</td>
</tr>
<tr>
<td>(\langle \text{while } b \text{ do } c, \sigma \rangle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else } \text{skip}, \sigma \rangle)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lambda calculus

- \(e ::= x \mid \lambda x.e \mid e \ e \)

- Recall
 - Scope of \(\lambda \) extends as far to the right as possible
 - \(\lambda x.\lambda y.x \ y \) is \(\lambda x.(\lambda y.(x \ y)) \)
 - Function application is left-associative
 - \(x \ y \ z \) is \((x \ y) \ z \)
 - Beta-reduction takes a single step of evaluation
 - \((\lambda x.e_1) \ e_2 \rightarrow e_1[e_2/x] \)
A nonderministic semantics

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\lambda x. e_1) e_2 \rightarrow e_1[e_2{x]}$</td>
<td></td>
</tr>
<tr>
<td>$e_1 \rightarrow e_1'$</td>
<td></td>
</tr>
<tr>
<td>$e_1 e_2 \rightarrow e_1' e_2$</td>
<td></td>
</tr>
<tr>
<td>$e \rightarrow e'$</td>
<td>$(\lambda x. e) \rightarrow (\lambda x. e')$</td>
</tr>
<tr>
<td>$e_2 \rightarrow e_2'$</td>
<td></td>
</tr>
<tr>
<td>$e_1 e_2 \rightarrow e_1 e_2'$</td>
<td></td>
</tr>
</tbody>
</table>

- Why are these semantics non-deterministic?
...with context rules

- \(C ::= □ | \ \lambda x. C | C \ e | e \ C \)

\[
\begin{align*}
e & \rightarrow e' \\
C[e] & \rightarrow C[e'] \\
(\lambda x. e1) \ e2 & \rightarrow e1[e2/x]
\end{align*}
\]
The Church-Rosser Theorem

- If $a \rightarrow^* b$ and $a \rightarrow^* c$, then there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$

- Church-Rosser is also called confluence
Normal Form

• A term is in *normal form* if it cannot be reduced
 - Examples: \(\lambda x.x \), \(\lambda x.\lambda y.z \)

• By Church-Rosser Theorem, every term reduces to at most one normal form
 - Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation

• Notice that for our application rule, the argument need not be in normal form
Not Every Term Has a Normal Form

- Consider
 - $\Delta = \lambda x.x \times$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$

- In general, *self application* leads to loops
 - ...which is where the Y combinator comes from (see 330)
Lazy vs. Eager Evaluation

• Our non-deterministic reduction rule is fine in theory, but awkward to implement

• Two deterministic strategies:
 - **Lazy:** Given $$(\lambda x. e_1)\ e_2$$, do not evaluate e_2 if e_1 does not “need” x
 - Also called left-most, **call-by-name (c.b.n.)**, call-by-need, applicative, normal-order (with slightly different meanings)
 - **Eager:** Given $$(\lambda x. e_1)\ e_2$$, always evaluate e_2 fully before applying the function
 - Also called **call-by-value (c.b.v.)**
C.b.n. small-step semantics

- $e ::= x \mid \lambda x.e \mid e\ e$

$\frac{\ (\lambda x.e_1)\ e_2 \rightarrow e_1[e_2/x]}{e_1 \rightarrow e_1'}$
$\frac{\ e_1\ e_2 \rightarrow e_1'[e_2]}{e_1 \rightarrow e_1' e_2}$

- Must evaluate function position until we get to a lambda
- Apply as soon as we know what fn we’re applying
- Do not evaluate “under” and lambda
- Do not evaluate the argument

- In context form:
 - $C ::= □ \mid C\ e$
C.b.v. small-step semantics

- \(e ::= x | v | e \ e \)
- \(v ::= \lambda x. e \)

\[
(\lambda x. e) \ v \rightarrow e[\nu \backslash x]
\]

- Must evaluate function position until we get to a lambda
- Evaluate function posn *before* argument posn
 - Not important here, but matters if we add side effects
- Do not evaluate “under” and lambda
- Argument must be fully evaluated before the call

- In context form:
 - \(C ::= \square | C \ e | v \ C \)
C.b.n. versus c.b.v. in theory

• Call-by-name is *normalizing*

 ▪ If a is closed and there is a normal form b such that $a \rightarrow^* b$ under the non-deterministic semantics, then $a \rightarrow^* d$ for some d under c.b.n. semantics

• Call-by-value is not!

 ▪ There are some programs that terminate under call-by-name but not under call-by-value

 - E.g., $(\lambda x.(\lambda y.y)) (\Delta \Delta)$
 - Where $\Delta = \lambda x. x x$
 - The non-terminating argument $(\Delta \Delta)$ is discarded under c.b.n., but c.b.v. attempts to evaluate it
C.b.n. vs. c.b.v. in practice

• Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell

• Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side effects
 - Main examples: Most languages (C, Java, ML, etc.)