CMSC 430
Introduction to Compilers
Spring 2016

Optimization
Introduction

• An optimization is a transformation “expected” to
 ▪ Improve running time
 ▪ Reduce memory requirements
 ▪ Decrease code size

• No guarantees with optimizers
 ▪ Produces “improved,” not “optimal” code
 ▪ Can sometimes produce worse code
Why are optimizers needed?

• Reduce programmer effort
 ▪ Don’t make programmers waste time doing simple opts

• Allow programmer to use high-level abstractions without penalty
 ▪ E.g., convert dynamic dispatch to direct calls

• Maintain performance portability
 ▪ Allow programmer to write code that runs efficiently everywhere
 ▪ Particularly a challenge with GPU code
Two laws and a measurement

- Moore’s law
 - Chip density doubles every 18 months
 - Until now, has meant CPU speed doubled every 18 months
 - These days, moving to multicore instead

- Proebsting’s Law
 - Compiler technology doubles CPU power every 18 years
 - Difference between optimizing and non-optimizing compiler about 4x
 - Assume compiler technology represents 36 years of progress

- Worse: runtime performance swings of up to 10% can be expected with no changes to executable
 - http://dl.acm.org/citation.cfm?id=1508275
Dimensions of optimization

- Representation to be optimized
 - Source code/AST
 - IR/bytecode
 - Machine code

- Types of optimization
 - Peephole — across a few instructions (often, machine code)
 - Local — within basic block
 - Global — across basic blocks
 - Interprocedural — across functions
Dimensions of optimization (cont’d)

- Machine-independent
 - Remove extra computations
 - Simplify control structures
 - Move code to less frequently executed place
 - Specialize general purpose code
 - Remove dead/useless code
 - Enable other optimizations

- Machine-dependent
 - Replace complex operations with simpler/faster ones
 - Exploit special instructions (MMX)
 - Exploit memory hierarchy (registers, cache, etc)
 - Exploit parallelism (ILP, VLIW, etc)
Selecting optimizations

• Three main considerations
 ▪ Safety — will optimizer maintain semantics?
 - Tricky for languages with partially undefined semantics!
 ▪ Profitability — will optimization improve code?
 ▪ Opportunity — could optimization often enough to make it worth implementing?

• Optimizations interact!
 ▪ Some optimizations enable other optimizations
 - E.g., constant folding enables copy propagation
 ▪ Some optimizations block other optimizations
Some classical optimizations

- Dead code elimination
 - Also, unreachable functions or methods

- Control-flow simplification
 - Remove jumps to jumps

```c
jmp L
/* unreachable */
L: ...

if true then
    ...
else
    /* unreachable */

jmp M
/* unreachable */
m = ...
```
```c
a = 5 /* dead */
a = 6
```
More classical optimizations

- **Algebraic simplification**
 - $x = a + 0 \rightarrow x = a$
 - $x = a \times 0 \rightarrow x = 0$
 - Be sure simplifications apply to modular arithmetic

- **Constant folding**
 - Pre-compute expressions involving only constants
 - $a = 5$
 - $b = 6$
 - $x = a + b$
 - $x = 11$
 - /* a, b dead */

- **Special handling for idioms**
 - Replace multiplication by shifting
 - May need constant folding to enable sometimes
More classical optimizations

• Common subexpression elimination

\[
\begin{align*}
\text{a} &= \text{b} + \text{c} \\
\text{d} &= \text{b} + \text{c}
\end{align*}
\rightarrow
\begin{align*}
\text{a} &= \text{b} + \text{c} \\
\text{d} &= \text{a}
\end{align*}
\]

• Copy propagation

\[
\begin{align*}
\text{b} &= \text{a} \\
\text{c} &= \text{b} \\
\text{/* b dead */}
\end{align*}
\rightarrow
\begin{align*}
\text{b} &= \text{a} \\
\text{c} &= \text{a} \\
\text{/* b dead */}
\end{align*}
\rightarrow
\begin{align*}
\text{c} &= \text{a}
\end{align*}
\]
Example

Fortran (!) source code:

```
sum = 0
10 sum = sum + a(i) * a(i)
```

Three-address code

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.

init for loop and check limit

a[i]

a[i] * a[i]

increment sum

Incr. loop counter back to loop check
Control-flow graph

1. \text{sum} = 0
2. \text{i} = 1

3. \text{if} \ i > \text{n} \ \text{goto 15}

4. \text{t1} = \text{addr(a)} - 4
5. \text{t2} = \text{i} \ast 4
6. \text{t3} = \text{t1}[\text{t2}]
7. \text{t4} = \text{addr(a)} - 4
8. \text{t5} = \text{i} \ast 4
9. \text{t6} = \text{t4}[\text{t5}]
10. \text{t7} = \text{t3} \ast \text{t6}
11. \text{t8} = \text{sum} + \text{t7}
12. \text{sum} = \text{t8}
13. \text{i} = \text{i} + 1
14. \text{goto} 3

15.
Common subexpression elimination

1. \text{sum} = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i \times 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i \times 4
9. t6 = t4[t5]
10. t7 = t3 \times t6
10a. t7 = t3 \times t3
11. t8 = \text{sum} + t7
12. \text{sum} = t8
13. i = i + 1
14. goto 3
15.
Copy propagation

1. \(\text{sum} = 0 \)
2. \(\text{i} = 1 \)
3. \(\text{if} \ i > n \ \text{goto} \ 15 \)
4. \(t1 = \text{addr(a)} - 4 \)
5. \(t2 = i \times 4 \)
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 \times t3 \)
11. \(t8 = \text{sum} + t7 \)
12. \(\text{sum} = t8 \)
12a. \(\text{sum} = \text{sum} + t7 \)
13. \(\text{i} = \text{i} + 1 \)
14. \(\text{goto} \ 3 \)
15.
Invariant code motion

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
13. i = i + 1
14. goto 3
15.
Strength reduction

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
3. if i > n goto 15
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
13. i = i + 1
14. goto 3
15. }
1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
2c. t9 = n * 4
3. if i > n goto 15
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
13. i = i + 1
14. goto 3a
15. Loop test adjustment
Induction variable elimination

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
2c. t9 = n * 4
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
13. i = i + 1
14. goto 3a
15.
1. \(\text{sum} = 0 \)
2. \(i = 1 \)
2a. \(t1 = \text{addr}(a) - 4 \)
2b. \(t2 = i * 4 \)
2d. \(t2 = 4 \)
2c. \(t9 = n * 4 \)
3a. if \(t2 > t9 \) goto 15
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 * t3 \)
12a. \(\text{sum} = \text{sum} + t7 \)
12b. \(t2 = t2 + 4 \)
14. goto 3a
15.
Dead code elimination

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2d. t2 = 4
2c. t9 = n * 4
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
14. goto 3a
15.
1. \(\text{sum} = 0 \)
2. \(t1 = \text{addr}(a) - 4 \)
3. \(t2 = 4 \)
4. \(t4 = n * 4 \)
5. if \(t2 > t4 \) goto 11
6. \(t3 = t1[t2] \)
7. \(t5 = t3 * t3 \)
8. \(\text{sum} = \text{sum} + t5 \)
9. \(t2 = t2 + 4 \)
10. goto 5
11.

unoptimized: 8 temps, 11 stmts in innermost loop
optimized: 5 temps, 5 stmts in innermost loop

1 index addressing
1 multiplication
2 additions
1 jump
1 test

2 index addressing
3 multiplications
2 additions & 2 subtractions
1 jump
1 test
1 copy
1. \(\text{sum} = 0 \)
2. \(t1 = \text{addr}[a] - 4 \)
3. \(t2 = 4 \)
4. \(t4 = 4 \times n \)
5. if \(t2 > t4 \) goto 11
6. \(t3 = t1[t2] \)
7. \(t5 = t3 \times t3 \)
8. \(\text{sum} = \text{sum} + t5 \)
9. \(t2 = t2 + 4 \)
10. goto 5
11. \\n\[CFG \text{ of final optimized code} \]
n = 1; k = 0; m = 3;
read x;
while (n < 10) {
 if (2 + x \geq 5) k = 5;
 if (3 + k == 3) m = m + 2;
 n = n + k + m;
}
1. \(n = 1; \)
2. \(k = 0; \)
3. \(m = 3; \)

4. read \(x; \)

5. while \((n < 10) \) {

6. \(\text{if } (2 * x \geq 5) \) \(k := 5; \)

7. \(\text{Unaffected by definitions in loop and guarded by invariant condition} \)

8. \(\text{Moveable after we move statements 6 and 7} \)

9. \(\text{Not moveable because may use def of m from statement 9 on previous iteration} \)

10. \(n = n + k + m; \)

11. }

Invariant within loop and therefore moveable
General code motion, result

\[
\begin{align*}
n &= 1; \quad k = 0; \quad m = 3; \\
\text{read } x; \\
\text{while } (n < 10) \{ \\
\quad \text{if } (2 \times x \geq 5) \quad k = 5; \\
\quad \text{if } (3 + k == 3) \quad m = m + 2; \\
\quad n = n + k + m; \\
\}
\end{align*}
\]

\[
\begin{align*}
n &= 1; \quad k = 0; \quad m = 3; \\
\text{read } x; \\
\text{if } (2 \times x \geq 5) \quad k = 5; \\
t1 &= (3 + k == 3); \\
\text{while } (n < 10) \{ \\
\quad \text{if } (t1) \quad m = m + 2; \\
\quad n = n + k + m; \\
\}
\end{align*}
\]
n = 1; k = 0; m = 3;
read x;
if (2 * x \geq 5) k := 5;
t1 = (3 + k == 3);
if (t1)
 while (n < 10) {
 m = m + 2;
 n = n + k + m;
 }
else
 while (n < 10)
 n = n + k + m;

Specialization of while loop depending on value of t1
(Global) common subexpr elim

\[z = a \times b \]
\[r = 2 \times z \]

\[q = a \times b \]

\[u = a \times b \]
\[z = u / 2 \]

\[w = a \times b \]

Can be eliminated since \(a \times b \) is available, i.e., calculated on all paths to this point.

Cannot be eliminated since \(a \times b \) is not available on all paths reaching this point.
(Global) common subexpr elim

Ensure $a*b$ is assigned to the same variable t so it can be used for the assignment to u.

$$
t = a * b \\
q = a * b \\
qu = t \\
z = u / 2 $$

$$
w = a * b $$
Copy propagation

We can then forward substitute \(t \) for \(z \)…
Dead code elimination

...and eliminate the assignment to z since it is now dead code.
What else can we do?

\[t = a \times b \]
\[r = 2 \times t \]
\[u = t \]
\[z = u / 2 \]
\[w = a \times b \]
Partial redundancy elimination

We can compute $a \times b$ on paths where it is not available…

Then eliminate the now fully redundant computation of $a \times b$