CMSC 430
Introduction to Compilers
Spring 2016

Type Systems
What is a Type System?

• A type system is some mechanism for distinguishing good programs from bad
 ▪ Good programs = well typed
 ▪ Bad programs = ill-typed or not typable

• Examples:
 ▪ 0 + 1 // well typed
 ▪ false 0 // ill-typed: can’t apply a boolean
 ▪ 1 + (if true then 0 else false) // ill-typed: can’t add boolean to integer

 - Notice that the type system may be conservative — it may report programs as erroneous if they could run without type errors
A Definition of Type Systems

“A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute.”

– Benjamin Pierce, *Types and Programming Languages*
The Plan

• Start with lambda calculus (yay!)
• Add types to it
 ▪ Simply-typed lambda calculus
• Prove type soundness
 ▪ So we know what our types mean
 ▪ We’ll learn about structural induction here
• Discuss issues of types in real languages
 ▪ E.g., null, array bounds checks, etc
• Explain type inference
• Add subtyping (for OO) to all of the above
We’ll use lambda calculus are a “core language” to explain type systems

- Has essential features (functions)
- No overlapping constructs
- And none of the cruft
 - Extra features of full language can be defined in terms of the core language (“syntactic sugar”)

We will add features to lambda calculus as we go on
Simply-Typed Lambda Calculus

• \(e ::= n \mid x \mid \lambda x: t. e \mid e \; e \)
 - Functions include the type of their argument
 - We’ve added integers, so we can have (obvious) type errs
 - We don’t really need this, but it will come in handy

• \(t ::= \text{int} \mid t \rightarrow t \)
 - \(t1 \rightarrow t2 \) is a the type of a function that, given an argument of type \(t1 \), returns a result of type \(t2 \)
 - \(t1 \) is the domain, and \(t2 \) is the range
Our type system will prove *judgments* of the form

- $A ⊢ e : t$
- “In type environment A, expression e has type t”
Type Environments

- A type environment is a map from variables to types (a kind of symbol table)
 - is the empty type environment
 - A closed term e is well-typed if for some t
 - We’ll abbreviate this as ⊢ e : t
 - x:t, A is just like A, except x now has type t
 - The type of x in x:t, A is t
 - The type of z≠x in x:t, A in the type of z in A

- When we see a variable in a program, we look in the type environment to find its type
Type Rules

\[
\begin{align*}
 & A \vdash n : \text{int} \\
 \text{x} \in \text{dom}(A) & \quad A \vdash x : A(x) \\
 \text{x}:\text{t}, A \vdash e : \text{t}' & \quad A \vdash e_1 : \text{t} \rightarrow \text{t}' \quad A \vdash e_2 : \text{t} \\
 A \vdash \lambda x:\text{t}.e : \text{t} \rightarrow \text{t}' & \quad A \vdash e_1 \ e_2 : \text{t}'
\end{align*}
\]
Example

\[A = - : \text{int} \rightarrow \text{int} \]

\[
\frac{- \in \text{dom}(A)}{A \vdash - : \text{int} \rightarrow \text{int}} \quad A \vdash 3 : \text{int}
\]

\[A \vdash - 3 : \text{int} \]
Another Example

\[
A = + : \text{int} \rightarrow \text{int} \rightarrow \text{int} \\
B = \text{x} : \text{int}, A \\
\]

\[
\begin{align*}
\text{+} & \in \text{dom}(B) \\
\text{x} & \in \text{dom}(B) \\
B & \vdash + : \text{i} \rightarrow \text{i} \rightarrow \text{i} \\
B & \vdash \text{x} : \text{i} \\
B & \vdash + \text{x} : \text{int} \rightarrow \text{int} \\
B & \vdash 3 : \text{int} \\
B & \vdash + \text{x} \ 3 : \text{int} \\
A & \vdash (\lambda \text{x} : \text{int} . + \text{x} \ 3) : \text{int} \rightarrow \text{int} \\
A & \vdash 4 : \text{int} \\
A & \vdash (\lambda \text{x} : \text{int} . + \text{x} \ 3) \ 4 : \text{int}
\end{align*}
\]

We’d usually use infix x + 3
An Algorithm for Type Checking

• Our type rules are deterministic
 ▪ For each syntactic form, only one possible rule

• They define a natural type checking algorithm
 ▪ TypeCheck : type env × expression → type
 TypeCheck(A, n) = int
 TypeCheck(A, x) = if x in dom(A) then A(x) else fail
 TypeCheck(A, λx:t.e) = TypeCheck((A, x:t), e)
 TypeCheck(A, e1 e2) =
 let t1 = TypeCheck(A, e1) in
 let t2 = TypeCheck(A, e2) in
 if dom(t1) = t2 then range(t1) else fail
Semantics

• Here is a small-step, call-by-value semantics

 ▪ If an expression can’t be evaluated any more and is not a value, then it is stuck

\[
\begin{align*}
(\lambda x. e) v2 &\rightarrow e1[v2/x] \\
\text{e1} &\rightarrow e1' \\
\text{e1 e2} &\rightarrow e1' e2 \\
\text{e2} &\rightarrow e2' \\
\text{v} &\rightarrow v1 e2' \\
\text{e} ::= v | x | e e \\
\text{v} ::= n | \lambda x: t. e
\end{align*}
\]

values – not evaluated
Progress

• Suppose \(\vdash e : t \). Then either \(e \) is a value, or there exists \(e' \) such that \(e \rightarrow e' \)

• Proof by induction on \(e \)
 - Base cases \(n, \lambda x.e \) – these are values, so we’re done
 - Base case \(x \) – can’t happen (empty type environment)
 - Inductive case \(e_1 e_2 \) – If \(e_1 \) is not a value, then by induction we can evaluate it, so we’re done, and similarly for \(e_2 \). Otherwise both \(e_1 \) and \(e_2 \) are values. Inspection of the type rules shows that \(e_1 \) must have a function type, and therefore must be a lambda since it’s a value. Therefore we can make progress.
Preservation

• If $\cdot \vdash e : t$ and $e \rightarrow e'$ then $\cdot \vdash e' : t$
• Proof by induction on $e \rightarrow e'$
 ▪ Induction (easier than the base case!). Expression e must have the form $e_1 e_2$.
 ▪ Assume $\cdot \vdash e_1 e_2 : t$ and $e_1 e_2 \rightarrow e'$. Then we have $\cdot \vdash e_1 : t' \rightarrow t$ and $\cdot \vdash e_2 : t'$.
 ▪ Then there are three cases.
 - If $e_1 \rightarrow e_1'$, then by induction $\cdot \vdash e_1 : t' \rightarrow t$, so $e_1' e_2$ has type t
 - If reduction inside e_2, similar
Preservation, cont’d

• Otherwise \((\lambda x.e) \, v \rightarrow e[v/x]\). Then we have

\[
\frac{x: t' \vdash e : t}{\vdash \lambda x. e : t' \rightarrow t}
\]

- Thus we have
 \[
 \frac{x : t' \vdash e : t}{\vdash \lambda x. e : t' \rightarrow t}
 \]

- Then by the substitution lemma (not shown) we have
 \[
 \frac{\vdash v : t'}{\vdash e[v/x] : t}
 \]

- And so we have preservation
Substitution Lemma

• If $A \vdash v : t$ and $x : t, A \vdash e : t'$, then $A \vdash e[v/x] : t'$
• Proof: Induction on the structure of e
• For lazy semantics, we’d prove
 • If $A \vdash e_1 : t$ and $x : t, A \vdash e : t'$, then $A \vdash e[e_1/x] : t'$
Soundness

• So we have
 - Progress: Suppose $\vdash e : t$. Then either e is a value, or there exists e' such that $e \rightarrow e'$
 - Preservation: If $\vdash e : t$ and $e \rightarrow e'$ then $\vdash e' : t$

• Putting these together, we get soundness
 - If $\vdash e : t$ then either there exists a value v such that $e \rightarrow^* v$, or e diverges (doesn’t terminate).

• What does this mean?
 - Evaluation getting stuck is bad, so
 - “Well-typed programs don’t go wrong”
Consequences of Soundness

• Progress—anything that can go wrong “locally” at run time should be forbidden in the type system
 ▪ E.g., can’t “call” an int as if it were a function
 ▪ To check this, identify all places where the semantics get stuck, and cross-reference with type rules

• Preservation—running a program can’t change types
 ▪ E.g., after beta reduction, types still the same
 ▪ To check this, ensure that for each possible way the semantics can take a step, types are preserved

• These problems greatly influence the way type systems are designed
Conditionals

e ::= ... | true | false | if e then e else e

\[
\begin{align*}
A \vdash true : bool & \\
A \vdash false : bool & \\
A \vdash e_1 : bool & A \vdash e_2 : t & A \vdash e_3 : t \\
\hdashline
A \vdash if e_1 \text{ then } e_2 \text{ else } e_3 : t
\end{align*}
\]
Conditionals (op sem)

\[e ::= \ldots \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e \]

- if true then \(e_2\) else \(e_3\) \(\rightarrow e_2\)
- if false then \(e_2\) else \(e_3\) \(\rightarrow e_3\)

\[e_1 \rightarrow e_1' \]
- if \(e_1\) then \(e_2\) else \(e_3\) \(\rightarrow\)
- if \(e_1'\) then \(e_2\) else \(e_3\)

- Notice how need to satisfy progress and preservation influences type system, and interplay between operational semantics and types
Product Types (Tuples)

\[e ::= \ldots \mid (e, e) \mid \text{fst } e \mid \text{snd } e \]

- \(A \vdash e_1 : t \) \(A \vdash e_2 : t' \)
 \[A \vdash (e_1, e_2) : t \times t' \]

- \(A \vdash e : t \times t' \)
 \[A \vdash \text{fst } e : t \]

- \(A \vdash e : t \times t' \)
 \[A \vdash \text{snd } e : t' \]

- Or, maybe, just add functions

 - \(\text{pair} : t \rightarrow t' \rightarrow t \times t' \)
 - \(\text{fst} : t \times t' \rightarrow t \)
 - \(\text{snd} : t \times t' \rightarrow t' \)
Sum Types (Tagged Unions)

e ::= ... | inL_{t2} e | inR_{t1} e
 | (case e of x1:t1 \rightarrow e1 | x2:t2 \rightarrow e2)

\[
\frac{A \vdash e : t1}{A \vdash \text{inL}_{t2} e : t1 + t2}
\]
\[
\frac{A \vdash e : t2}{A \vdash \text{inR}_{t1} e : t1 + t2}
\]

\[
\frac{A \vdash e : t1 + t2}{x1:t1, A \vdash e1 : t \quad x2:t2, A \vdash e2 : t}
\]
\[
A \vdash (\text{case } e \text{ of } x1:t1 \rightarrow e1 \mid x2:t2 \rightarrow e2) : t
\]
Self Application and Types

• Self application is not checkable in our system

\[
x:?, A \vdash x : t \rightarrow t' \\
x:?, A \vdash x : t \\
\hline
x:?, A \vdash x \ x : ...
\]

\[
A \vdash \lambda x:? . x \ x : ...
\]

- It would require a type \(t \) such that \(t = t \rightarrow t' \)
 - (We’ll see this next, but so far...)

• The simply-typed lambda calculus is strongly normalizing

 - Every program has a normal form
 - I.e., every program halts!
Recursive Types

- We can type self application if we have a type to represent the solution to equations like $t = t \rightarrow t'$
 - We define the type $\mu \alpha.t$ to be the solution to the (recursive) equation $\alpha = t$
 - Example: $\mu \alpha.\text{int} \rightarrow \alpha$

```
int →
  ↓
  int →
    ↓
    int →
      ↓
      int →
        ↓
        int
```

or

```
int →
  ↓
  int
```

Discussion

• In the pure lambda calculus, every term is typable with recursive types
 ▪ (Pure = variables, functions, applications only)

• Most languages have some kind of “recursive” type
 ▪ E.g., for data structures like lists, tree, etc.

• However, usually two recursive types that define the same structure but use a different name are considered different
 ▪ E.g., in C, `struct foo { int x; struct foo *next; }` is different from `struct bar { int x; struct bar *next; }`
Subtyping

• The Liskov Substitution Principle (paraphrased):

Let \(q(x) \) be a property provable about objects \(x \) of type \(T \). If \(S \) is a subtype of \(T \), then \(q(y) \) should be provable for objects \(y \) of type \(S \).

• In other words

If \(S \) is a subtype of \(T \), then an \(S \) can be used anywhere a \(T \) is expected.

• Common used in object-oriented programming
 - Subclasses can be used where superclasses expected
 - This is a kind of **polymorphism**
Kinds of Polymorphism

- Parametric polymorphism
 - Generics in Java, `a types in OCaml

- Another popular form is subtype polymorphism
 - As in OO programming
 - These two can be combined (c.f. Java)

- Some languages also have *ad-hoc polymorphism*
 - E.g., + operator that works on ints and floats
 - E.g., overloading in Java
Lambda Calc with Subtyping

- $e ::= n \mid f \mid x \mid \lambda x : t . e \mid e _e$
 - We now have both floating point numbers and integers
 - We want to be able to implicitly use an integer wherever a floating point number is expected
 - Warning: This is a bad design! Don’t do this in real life

- $t ::= \text{int} \mid \text{float} \mid t \rightarrow t$
 - We want \text{int} to be a subtype of \text{float}
Subtyping

• We’ll write \(t_1 \leq t_2 \) if \(t_1 \) is a subtype of \(t_2 \)

• Define subtyping by more inference rules

• Base case

\[
\text{int} \leq \text{float}
\]

• (notice reverse is not allowed)

• What about function types?

\[
\frac{t_1 \to t_1' \leq t_2 \to t_2'}{??}
\]
Replacing “f x” by “g x”

- Suppose \(g : t_1 \rightarrow t_1' \) and \(f : t_2 \rightarrow t_2' \)
- When is \(t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2' \)?

- Return type:
 - We are expecting \(t_2' \) (f’s return type)
 - So we can return \(at\; most\; t_2' \)
 - So need \(t_1' \leq t_2' \)

- Examples
 - If we’re expecting \texttt{float}, can return \texttt{int} or \texttt{float}
 - If we’re expecting \texttt{int}, can only return \texttt{int}
Replacing “f x” by “g x”

• Suppose \(g : t_1 \rightarrow t_1' \) and \(f : t_2 \rightarrow t_2' \)

• When is \(t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2' \)?

• Argument type:
 - We are supposed to accept expecting \(t_2 \) (f’s arg type)
 - So we must accept at least \(t_2 \)
 - So need \(t_2 \leq t_1 \)

• Examples
 - A function that accepts an int can be replaced by one that accepts int, or one that accepts float
 - A function that accepts a float can only be replaced by one that accepts float
Subtyping on Function Types

\[
t_2 \leq t_1 \quad t_1' \leq t_2' \quad \frac{t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2'}
\]

• We say that arrow is
 - *Covariant* in the range (subtyping dir the same)
 - *Contravariant* in the domain (subtyping dir flips)

• Some languages have gotten this wrong
 - Eiffel allows covariant parameter types
Similar Pattern for Pre/Post-conds

- class A { int f(int x) { ... } }
- class B extends A { int f(int x) { ... } }

- A.f — precondition Pre_A, postcondition Post_A
- B.f — precondition Pre_B, postcondition Post_B
- Relationship among \{Pre,Post\}_{A,B}?
 - Post_A \implies Post_B
 - Pre_B \implies Pre_A

- Example:
 - Pre_A = (x > 42), Post_A = (ret > 42)
 - Pre_B = (x > 0), Post_B = (ret > 100)
Type Rules, with Subtyping

\[\begin{align*}
A \vdash n : \text{int} & \quad \text{A \vdash f : float} \\
\text{x} \in \text{dom}(A) & \quad \text{x:t, A \vdash e : t'} \\
A \vdash x : A(x) & \quad A \vdash \lambda \text{x:t.e} : t \rightarrow t' \\
A \vdash e_1 : t_1 \rightarrow t_1' & \quad A \vdash e_2 : t_2 \quad t_2 \leq t_1 \\
\text{A \vdash el e2 : t} & \quad \text{A \vdash el e2 : t'}
\end{align*}\]
Soundness

• Progress and preservation still hold
 ▪ Slight tweak: as evaluation proceeds, expression’s type may “decrease” in the subtyping sense
 ▪ Example:
 - (if true then n else f) : float
 - But after taking one step, will have type \(\text{int} \leq \text{float} \)

• Proof: exercise for the reader
Subtyping, again

\[A \vdash n : \text{int} \]

\[x \in \text{dom}(A) \]

\[A \vdash x : A(x) \]

\[A \vdash \lambda x : t . e : t \rightarrow t' \]

\[A \vdash e_1 : t_1 \rightarrow t_1' \]

\[A \vdash e_2 : t_2 \]

\[A \vdash e_1 \ e_2 : t_2 \]

\[A \vdash e : t \quad t \leq t' \]

\[A \vdash e : t' \]
Subtyping, again (cont’d)

• Rule with subtyping is called *subsumption*
 ▪ Very clearly captures subtyping property

• But system is no longer *syntax driven*
 ▪ Given an expression e, there are two rules that apply to e
 (“regular” type rule, and subsumption rule)

• Can prove that the two systems are equivalent
 ▪ Exercise left to the reader
Lambda Calc with Updatable Refs

• \(e ::= \ldots \mid \text{ref } e \mid !e \mid e := e \)
 - ML-style updatable references
 - \(\text{ref } e \) — allocate memory and set its contents to \(e \); return pointer
 - \(!e \) — dereference pointer and return contents
 - \(e_1 := e_2 \) — update contents pointed to by \(e_1 \) with \(e_2 \)

• \(t ::= \ldots \mid t \text{ ref} \)
 - A \(t \text{ ref} \) is a pointer to contents of type \(t \)
Type Rules for Refs

\[
\frac{A ⊢ e : t}{A ⊢ \text{ref } e : t \text{ ref}} \quad \frac{A ⊢ e : t \text{ ref}}{A ⊢ !e : t}
\]

\[
\frac{A ⊢ e_1 : t_1 \text{ ref} \quad A ⊢ e_2 : t_2 \quad t_2 ≤ t_1}{A ⊢ e_1 := e_2 : t_1}
\]

\[
\frac{A ⊢ e_1 : t_1 \text{ ref} \quad A ⊢ e_2 : t_2 \quad t_2 ≤ t_1}{A ⊢ e_1 := e_2 : t_1}
\]
Subtyping Refs

• The wrong rule for subtyping refs is

\[t_1 \leq t_2 \]

\[\frac{t_1 \; \text{ref} \leq t_2 \; \text{ref}}{t_1 \; \text{ref} \leq t_2 \; \text{ref}} \]

• Counterexample

let x = ref 3 in (* x : int ref *)
let y = x in (* y : float ref *)
y := 3.14 (* oops! !x is now a float *)
Aliasing

- We have multiple names for the same memory location
 - But they have different types
 - This we can write into the same memory at different types

```
x int
```
```
y float
```
Solution #1: Java’s Approach

• Java uses this subtyping rule
 - If S is a subclass of T, then $S[]$ is a subclass of $T[]$

• Counterexample:
 - Foo[] a = new Foo[5];
 - Object[] b = a;
 - $b[0]$ = new Object(); // forbidden at runtime
 - $a[0].foo();$ // …so this can’t happen
Solution #2: Purely Static

- Reason from rules for functions
 - A reference is like an object with two methods:
 - get : unit \rightarrow t
 - set : t \rightarrow unit
 - Notice that t occurs both co- and contravariantly
 - Thus it is non-variant

- The right rule:

\[
\begin{align*}
 t_1 \leq t_2 & \quad t_2 \leq t_1 \\
 \text{or} & \\
 t_1 \text{ ref} \leq t_2 \text{ ref} & \\
 \quad t_1 = t_2 \\
 \text{or} & \\
 t_1 \text{ ref} \leq t_2 \text{ ref}
\end{align*}
\]
Type Inference

• Let’s consider the simply typed lambda calculus with integers
 ▪ \(e ::= n \mid x \mid \lambda x : t . e \mid e \; e \)

• *Type inference*: Given a bare term (with no type annotations), can we reconstruct a valid typing for it, or show that it has no valid typing?
Type Language

• Problem: Consider the rule for functions

\[
\frac{x : t, A \vdash e : t'}{A \vdash \lambda x : t.e : t' \rightarrow t'}
\]

• Without type annotations, where do we get \(t \)?
 - We’ll use type variables to stand for as-yet-unknown types
 - \(t ::= \alpha \mid \text{int} \mid t \rightarrow t \)
 - We’ll generate equality constraints \(t = t \) among the types and type variables
 - And then we’ll solve the constraints to compute a typing
Type Inference Rules

<table>
<thead>
<tr>
<th>Rule Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \vdash n : \text{int})</td>
</tr>
<tr>
<td>(x \in \text{dom}(A))</td>
</tr>
<tr>
<td>(x : \alpha, A \vdash e : t') ((\alpha) fresh)</td>
</tr>
<tr>
<td>(A \vdash \lambda x.e : \alpha \rightarrow t')</td>
</tr>
<tr>
<td>(A \vdash e_1 : t_1) (A \vdash e_2 : t_2) ((t_1 = t_2 \rightarrow \beta) ((\beta) fresh))</td>
</tr>
<tr>
<td>(A \vdash e_1 \ e_2 : \beta)</td>
</tr>
</tbody>
</table>

"Generated" constraint
Example

\[
\begin{align*}
\text{x:} \alpha, \ A \vdash \text{x:} \alpha \\
\hline
A \vdash (\lambda x. x) : \alpha \rightarrow \alpha & \quad \quad \quad A \vdash 3 : \text{int} & \quad \alpha \rightarrow \alpha = \text{int} \rightarrow \beta \\
\hline
A \vdash (\lambda x. x) 3 : \beta
\end{align*}
\]

• We collect all constraints appearing in the derivation into some set \(C \) to be solved
• Here, \(C \) contains just \(\alpha \rightarrow \alpha = \text{int} \rightarrow \beta \)
 • Solution: \(\alpha = \text{int} = \beta \)
• Thus this program is typable, and we can derive a typing by replacing \(\alpha \) and \(\beta \) by \text{int} in the proof tree
Solving Equality Constraints

- We can solve the equality constraints using the following rewrite rules, which reduce a larger set of constraints to a smaller set:
 - $C \cup \{\text{int}=\text{int}\} \Rightarrow C$
 - $C \cup \{\alpha=t\} \Rightarrow C[t\backslash \alpha]$
 - $C \cup \{t=\alpha\} \Rightarrow C[t\backslash \alpha]$
 - $C \cup \{t1\rightarrow t2=t1'\rightarrow t2'\} \Rightarrow C \cup \{t1=t1'\} \cup \{t2=t2'\}$
 - $C \cup \{\text{int}=t1\rightarrow t2\} \Rightarrow \text{unsatisfiable}$
 - $C \cup \{t1\rightarrow t2=\text{int}\} \Rightarrow \text{unsatisfiable}$
Termination

- We can prove that the constraint solving algorithm terminates.

- For each rewriting rule, either
 - We reduce the size of the constraint set
 - We reduce the number of “arrow” constructors in the constraint set

- As a result, the constraint always gets “smaller” and eventually becomes empty
 - A similar argument is made for strong normalization in the simply-typed lambda calculus
We don’t have recursive types, so we shouldn’t infer them.

So in the operation $C[t\backslash \alpha]$, require that $\alpha \notin FV(t)$

- (Except if $t = a$, in which case there’s no recursion in the types, so unification should succeed)

In practice, it may better to allow $\alpha \in FV(t)$ and do the occurs check at the end

- But that can be awkward to implement
Unifying a Variable and a Type

• Computing $C[t\alpha]$ by substitution is inefficient

• Instead, use a union-find data structure to represent equal types
 - The terms are in a union-find forest
 - When a variable and a term are equated, we union them so they have the same ECR (equivalence class representative)
 - Want the ECR to be the concrete type with which variables have been unified, if one exists. Can read off solution by reading the ECR of each set.
Example

\[\alpha = \text{int} \rightarrow \beta \]

\[\gamma = \text{int} \rightarrow \text{int} \]

\[\alpha = \gamma \]
The process of finding a solution to a set of equality constraints is called unification.

- Original algorithm due to Robinson
 - But his algorithm was inefficient
- Often written out in different form
 - See Algorithm W
- Constraints usually solved on-line
 - As type inference rules applied
The algorithm we’ve given finds the most general type of a term

- Any other valid type is “more specific,” e.g.,
 - \(\lambda x.x : \text{int} \to \text{int} \)
- Formally, any other valid type can be gotten from the most general type by applying a substitution to the type variables

This is still a monomorphic type system

- \(\alpha \) stands for “some particular type, but it doesn’t matter exactly which type it is”
Benefits of Type Inference

- Handles higher-order functions
- Handles data structures smoothly
- Works in infinite domains
 - Set of types is unlimited
- No forward/backward distinction
 - (Compare to data flow analysis, next)
Drawbacks to Type Inference

- Flow-insensitive
 - Types are the same at all program points
 - May produce coarse results
 - Type inference failure can be hard to understand

- Polymorphism may not scale
 - Exponential in worst case
 - Seems fine in practice (witness ML)