Problem:
1 machine, it can be working on at most one job at a time
n jobs \(J_1, \ldots, J_n \)

unit length, non-preemptive
release time 0
once the job has started, it may not stop until it has completed
deadline \(d_j \in \mathbb{Z}^+ \)
profit \(g_j \in \mathbb{Z}^+ \)

goal: feasibly schedule a subset \(S' \) of jobs where \(S \) has max profit.
\[
\sum_{j \in S'} g_j \geq \sum_{j \in S} g_j
\]

Examples:

\[
\begin{array}{c|c}
\hline
\text{job} & \text{profit} \\
\hline
J_1 & 20 \\
J_2 & 15 \\
J_3 & 10 \\
J_4 & 7 \\
J_5 & 5 \\
J_6 & 3 \\
\hline
\end{array}
\]

The greedy algorithm for this problem bears heavy resemblance to Kruskal's alg. for minimum spanning trees.

High-level of Greedy Scheduler:
- sort jobs s.t. \(g_1 \geq g_2 \geq \ldots \geq g_n \)
- \(J \leftarrow \emptyset \)
- for each job \(j \) from 1 to \(n \) do
 - if feasible \(\text{feas}(J \cup \{j\}) \) do
 - \(J \leftarrow J \cup \{j\} \)

(Recall Kruskal's alg):
- sort edges s.t. \(w(e_1) \leq w(e_2) \leq \ldots \leq w(e_m) \)
- \(T \leftarrow \emptyset \)
- for each edge \(e \) from 1 to \(m \) do
 - if feasible \(\text{feas}(T \cup \{e\}) \) do
 - \(T \leftarrow T \cup \{e\} \)

Oracle telling us whether \(J \cup \{j\} \) is a feasible set of jobs, i.e. whether there exists a schedule of \(J \cup \{j\} \).

Nevermind for now how the oracle determines whether a set of jobs is feasible. We will come back to this.

Note: An optimal schedule having no idle time.
Claim: Greedy Scheduler maximizes profit.

Proof:

- let J denote jobs satisfied in GS' solution and S_J be some feasible schedule of jobs J.
- let I denote jobs satisfied by the optimal solution (OPT); S_I a feasible schedule of I.

one can rearrange S_J and S_I into S'_J and S'_I s.t. any $j \in I \cap J$ is done in some slot, S'_J and S'_I:

for every job $a \in I \cap J$:

(i) if a in same slot in S_J and S_I, nothing to rearrange.

(ii) if S_J schedules a earlier than S_I, schedules a,

\[S_J \rightarrow a \leftarrow b \rightarrow \]
\[S_I \rightarrow a \rightarrow \]
\[d_a \text{ is after this point} \]

(b may be nothing if S_J didn't schedule anything in the slot where S_I scheduled a. Can still "swap")

(iii) if S_J sch's a later than S_I sch's a,

\[S_J \rightarrow a \rightarrow \]
\[S_I \rightarrow a \leftarrow b \rightarrow \]

in S_I, swap a with b. again, still feasible.

- once job a has been moved into agreement, it never needs to move again. can repeat this argument for all of $I \cap J$, each time decreasing number of common but unsynced jobs.

so profit (S'_J) = profit(S_J) and profit (S'_I) = profit(S_I).

- S'_J and S'_I can still look different, but only because $I \neq J$. How can this happen?

Case 1: S'_J \[\rightarrow a \rightarrow \] some job a is sched in S'_J opposite an empty slot in S'_I and $a \notin I$.

\[S'_J \rightarrow f \rightarrow \] Empty

% contradicts optimality of I since $I \cup IaJ$ is feasible and more profitable.

Case 2: S'_J \[\rightarrow b \rightarrow \] some job a is sched in S'_I opposite empty slot in S'_J and $a \notin J$.

\[J \cup IaJ \text{ is feasible and Greedy Scheduler wouldn't have skipped it.} \]

\[J \cup IaJ \rightarrow a \rightarrow \]

Case 3: S'_J \[\rightarrow a \rightarrow \] $a \notin I$.

\[S'_I \rightarrow b \rightarrow \] $b \notin J$.

Case 3.1: $g_a > g_b$. $I \{b, v, IaJ\}$ is more profitable than I.

% optimality of I.

Case 3.2: $g_a < g_b$. then Greedy Scheduler skipped over b to eventually pick a. % greediness

Case 3.3: $g_a = g_b$. How is the only thing that can happen.

\[t \text{ timeslots} t, \text{ at } S'_J \text{ and } S'_I \text{ schedule} \]

- no jobs
- same job
- two jobs with same profit.

\[\Rightarrow \text{profit of } S'_J = \text{profit of } S'_I \]

\[\Rightarrow \text{schedule } S'_I \text{ yields optimal (i.e. maximum) profit.} \]
Determining feasibility:

FeasOracle(J): for each $i \in J$, schedule i at t, the latest possible free slot $t \leq \min(n, d_i)$.

Lemma: J is feasible iff FeasOracle(J) returns a feasible solution.

Proof: \Leftarrow: trivial.

\Rightarrow: suppose J is feasible.

then \exists a feas. sch.

then \exists a feas. sch. scheduling all jobs in first $|J|$ timeslots "left-shifted sch."

Can always move jobs earlier.

Suppose FeasOracle(J) does not return a feasible sol'n, i.e. \exists job $i \in J$ s.t. FeasOracle was unable to add it before $\min(|J|, d_i)$

since slot s is empty, all $(s-1)$ jobs scheduled here have deadline $\leq s-1$

\therefore J has at least s jobs, each of whose deadline is $\leq s$.

By Pigeonhole Prin., J cannot be feasible.

How to implement Greedy Scheduler with FeasOracle: note that FeasOracle doesn't specify order in which jobs of J are added to schedule. We will choose to add them in same order of non-increasing g_j so that we don't have to rebuild the sch. from scratch with each oracle call.

Greedy Scheduler details

- Sort jobs s.t. $g_1 \geq g_2 \geq \ldots \geq g_n$ (compute d_{\max} along the way)

- for each $t \leftarrow 1$ to $\min(n, d_{\max})$ do
 - $S[t] \leftarrow NIL$ (Schedule)
 - free[t] $\leftarrow t$ (latest free slot earlier than or equal to t)

- for each job $j \leftarrow 1$ to n do
 - $m \leftarrow \min(n, d_j)$ (get latest free slot $\leq \min(n, d_j)$)
 - if $m > 0$ do
 - $S[m] \leftarrow j$ (schedule j there)
 - $m' \leftarrow m$
 - while $S[m'] \neq NIL$ do
 - $free[m'] \leftarrow free[m'-1]$
 - $m' \leftarrow m' + 1$

 - Total time: $O(n \log n) + O(n^2) \Rightarrow O(n^2)$.

m' iterates over this

free[m-i] former

free[\min(n,d_j)]