
1 

CMSC 714 
High Performance Computing 

Lecture 1 - Introduction 
http://www.cs.umd.edu/class/spring2017/cmsc714  

Alan Sussman 
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Introduction 

●  Class is an introduction to parallel computing 
–  topics include: hardware, applications, compilers, system 

software, and tools 

●  Counts for Masters/PhD Comp Credit 
●  Work required 

–  small programming assignments (two) - MPI/OpenMP 
–  midterm 
–  classroom participation 

•  Everyone will have to prepare questions for the readings 
for several classes (4 students per class with readings), 
and help explain the papers 

–  group project (3-4 students per group) 
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What is Parallel Computing? 

●  Does it include: 
–  super-scalar processing (more than one instruction at once)? 
–  client/server computing? 

•  what if RPC calls are non-blocking? 
–  vector processing (same instruction to several values)? 
–  collection of PC’s not connected to a (fast) network? 

●   For this class, parallel computing requires: 
–  more than one processing element 

–  nodes connected to a communication network 

–  nodes working together to solve a single problem 
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Why Parallelism 

●  Speed 
–  need to get results faster than possible with sequential 

•  a weather forecast that is late is useless 
–  could come from 

•  more processing elements (P.E.’s)  
•  more memory (or cache) 
•  more disks 

●  Cost: cheaper to buy many smaller machines  
–  this is only relatively recently true due to 

•  VLSI  
•  commodity parts 
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  PARALLEL ARCHITECTURE 
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What Does a Parallel Computer Look 
Like? 

●  Hardware 
–  processors 
–  communication 
–  memory 
–  coordination 

●  Software 
–  programming model 
–  communication libraries 
–  operating system 
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Processing Elements (PE) 
●  Key Processor Choices 

–  How many? 
–  How powerful? 
–  Custom or off-the-shelf? 

●  Major Styles of Parallel Computing 
–  SIMD - Single Instruction Multiple Data 

•  one master program counter (PC) 
–  MIMD - Multiple Instruction Multiple Data 

•  separate code for each processor 
–  SPMD - Single Program Multiple Data 

•  same code on each processor, separate PC’s on each 
–  Dataflow – instruction (or code block) waits for operands 

•  “automatically” finds parallelism 
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Communication Networks 
●  Connect 

–  PE’s, memory, I/O 

●  Key Performance Issues 
–  latency: time for first byte 
–  throughput: average bytes/second 

●  Possible Topologies 
–  bus - simple, but doesn’t scale 
 
 
 
–  ring - orders delivery of messages 
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Topologies (cont) 

–  tree - need to increase bandwidth near the top 
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– mesh - two or three dimensions 

 

  

 

– hypercube - needs a power of (2) number of nodes 

Current state of the art is dragonfly 
network – local groups with mesh 
+ global links between groups 
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Memory Systems 

●  Key Performance Issues 
–  latency: time for first byte 
–  throughput: average bytes/second 

●  Design Issues 
–  Where is the memory 

•  divided among each node 
•  centrally located (on communication network) 

–  Access by processors 
•  can all processors get to all memory? 
•  is the access time uniform? 

– UMA vs. NUMA 


