
1

CMSC 714
High Performance Computing

Lecture 1 - Introduction
http://www.cs.umd.edu/class/spring2017/cmsc714

Alan Sussman

2 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

Introduction

●  Class is an introduction to parallel computing
–  topics include: hardware, applications, compilers, system

software, and tools

●  Counts for Masters/PhD Comp Credit
●  Work required

–  small programming assignments (two) - MPI/OpenMP
–  midterm
–  classroom participation

•  Everyone will have to prepare questions for the readings
for several classes (4 students per class with readings),
and help explain the papers

–  group project (3-4 students per group)

3 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

What is Parallel Computing?

●  Does it include:
–  super-scalar processing (more than one instruction at once)?
–  client/server computing?

•  what if RPC calls are non-blocking?
–  vector processing (same instruction to several values)?
–  collection of PC’s not connected to a (fast) network?

●  For this class, parallel computing requires:
–  more than one processing element

–  nodes connected to a communication network

–  nodes working together to solve a single problem

4 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

Why Parallelism

●  Speed
–  need to get results faster than possible with sequential

•  a weather forecast that is late is useless
–  could come from

•  more processing elements (P.E.’s)
•  more memory (or cache)
•  more disks

●  Cost: cheaper to buy many smaller machines
–  this is only relatively recently true due to

•  VLSI
•  commodity parts

2

5 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

 PARALLEL ARCHITECTURE

6 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

What Does a Parallel Computer Look
Like?

●  Hardware
–  processors
–  communication
–  memory
–  coordination

●  Software
–  programming model
–  communication libraries
–  operating system

7 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

Processing Elements (PE)
●  Key Processor Choices

–  How many?
–  How powerful?
–  Custom or off-the-shelf?

●  Major Styles of Parallel Computing
–  SIMD - Single Instruction Multiple Data

•  one master program counter (PC)
–  MIMD - Multiple Instruction Multiple Data

•  separate code for each processor
–  SPMD - Single Program Multiple Data

•  same code on each processor, separate PC’s on each
–  Dataflow – instruction (or code block) waits for operands

•  “automatically” finds parallelism

8 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

SIMD

0

1
1

0
1

Program Counter

Mask Flag

Processors

Program

3

9 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

MIMD

Processors

Program Counter Program Counter Program Counter

Program #1 Program #2 Program #3

10 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

SPMD
Processors

Program Counter Program Counter Program Counter

Program Program Program

Program

11 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

I2 I3 I1

Dataflow

instruction
instruction

I4

12 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

Communication Networks
●  Connect

–  PE’s, memory, I/O

●  Key Performance Issues
–  latency: time for first byte
–  throughput: average bytes/second

●  Possible Topologies
–  bus - simple, but doesn’t scale

–  ring - orders delivery of messages

PE

MEM MEM

MEM

PE

PE
MEM

PE

4

13 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

Topologies (cont)

–  tree - need to increase bandwidth near the top

PE PE PE PE

PE

PE

PE

PE PE

PE

PE PE

PE PE

PE

PE

PE PE

PE PE
PE PE

PE PE

– mesh - two or three dimensions

– hypercube - needs a power of (2) number of nodes

Current state of the art is dragonfly
network – local groups with mesh
+ global links between groups

14 CMSC 714 – S17 Alan Sussman & Jeffrey K. Hollingsworth

Memory Systems

●  Key Performance Issues
–  latency: time for first byte
–  throughput: average bytes/second

●  Design Issues
–  Where is the memory

•  divided among each node
•  centrally located (on communication network)

–  Access by processors
•  can all processors get to all memory?
•  is the access time uniform?

– UMA vs. NUMA

