
1 CMSC714

Defect Patterns in
High Performance Computing

Taiga Nakamura

(edits by A. Sussman)
University of Maryland

2 CMSC714

Notes
•  MPI project to be posted today, due Wed.,

March 1, 6PM, via email
•  Office hours? Scheduled, or by appointment?
•  Send questions for readings, starting

Thursday
–  additional readings posted soon

3 CMSC714

Background
•  Debugging and testing parallel code is hard

–  How can bugs be prevented or found/fixed effectively?

•  “Knowing” common defects (bugs) will reduce the
time spent debugging

–  Novice developers can learn how to detect/prevent them
–  Someone may develop tools and/or improve language

•  HPCS project built “Defect patterns” for high
performance programming (HPC)

–  Based on the empirical data collected in various studies
–  Examples in this presentation are shown in C + MPI

(Message Passing Interface)

4 CMSC714

Differentiating Factors of HPC
•  Platform: Computational power of today's HPC systems is achieved by

massively parallel systems. Writing a scalable program on these systems is
difficult.

•  Performance: Slow execution speed can be a defect even if the output is
correct. Achieving good performance on multiple processors is often difficult

•  Language: Developers usually use special HPC languages and libraries (MPI,
OpenMP, UPC, CAF, CUDAß, ...), each with their own ways of handling issues
such as communication and synchronization. SPMD (Single Program, Multiple
Data) approach is dominant

•  Developers: Software often developed by scientists and grad students without
formal training in software engineering. Traditional software engineering
processes or practices are not necessarily used in HPC projects

•  Tools: The use of modern tools (IDEs, graphical debuggers, defect detection
tools, profiling tools, etc.) is not as common as in other domains

•  Portability: Portability is very important for HPC applications since they must
be run on various platforms depending on the computational resources available

•  Validation: Given the nature of HPC applications, the correct outputs are not
always known, so debugging is particularly challenging and costly.

5 CMSC714

Example Problem
•  Consider the following problem:

1.  N cells, each of which holds an integer [0..9]
•  E.g., cell[0]=2, cell[1]=1, …, cell[N-1]=3

2.  In each step, cells are updated using the values of neighboring cells
•  cellnext[x] = (cell[x-1] + cell[x+1]) mod 10
•  cellnext[0]=(3+1), cellnext[1]=(2+6), …
•  (Assume the last cell is adjacent to the first cell)

3.  Repeat 2 for steps times

A sequence of N cells
2 1 6 8 7 1 0 2 4 5 1 … 3

What defects can appear when implementing a parallel solution in MPI?
6 CMSC714

First, Sequential Solution
•  Approach to implementation

–  Use an integer array buffer[] to represent the
cell values

–  Use a second array nextbuffer[] to store the
values in the next step, and swap the buffers

–  Straightforward implementation!

7 CMSC714

/* Initialize cells */
int x, n, *tmp;
int *buffer = (int*)malloc(N * sizeof(int));
int *nextbuffer = (int*)malloc(N * sizeof(int));
FILE *fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
for (x = 0; x < N; x++) { fscanf(fp, "%d", &buffer[x]); }
fclose(fp);

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 0; x < N; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

/* Final output */
...
free(nextbuffer); free(buffer);

Sequential C Code

8 CMSC714

Approach to a Parallel Version
•  Each process stores (1/P) of the cells

–  P : number of processes

2 1 6 8 7 1 0 2 4 5 1 … 3

2 1 …

Process 0

•  Each process needs to:
•  update the locally stored cells
•  exchange boundary cell values between neighboring

processes (nearest-neighbor communication)

…

…

Process 1

…

Process (P-1)

Process 2

9 CMSC714

Recurring HPC Defects
•  We simulate the process of writing parallel

code and discuss what kinds of defects can
appear.

•  Defect types are shown as:
–  Pattern descriptions (symptoms, causes, cures &

preventions)
–  Concrete examples in MPI implementation

10 CMSC714

Pattern: Erroneous use of parallel language features
•  “Simple” mistakes that are common for novices: language

usage, choice of function, etc.
•  E.g., forgotten mandatory function calls for init/finalize
•  E.g., inconsistent parameter types between send and recv

Symptoms:
•  Compile-type error (easy to fix)
•  Some defects may surface only under specific conditions

•  (number of processors, value of input, hardware/software
environment…)

Causes:
•  Lack of experience with the syntax and semantics of new

language features
Cures & preventions:
•  Understand subtleties and variations of language features
•  In a large code, confine parallel function calls to a particular

part of the code to help make fewer errors

11 CMSC714

/* Initialize MPI */
MPI_Status status;
status = MPI_Init(NULL, NULL);
if (status != MPI_SUCCESS) { exit(-1); }

/* Initialize cells */
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
for (x = 0; x < N; x++) { fscanf(fp, "%d", &buffer[x]); }
fclose(fp);

/* Main loop */
...

/* Final output */
...

/* Finalize MPI */
MPI_Finalize();

Adding basic MPI functions

What are the bugs? 12 CMSC714

/* Initialize MPI */
MPI_Status status;
status = MPI_Init(NULL, NULL);
if (status != MPI_SUCCESS) { exit(-1); }

/* Initialize cells */
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
for (x = 0; x < N; x++) { fscanf(fp, "%d", &buffer[x]); }
fclose(fp);

/* Main loop */
...

What are the defects?

MPI_Init(&argc, &argv);

MPI_Finalize();

•  Passing NULL to MPI_Init is invalid in MPI-1 (ok in later MPI
versions)

•  MPI_Finalize must be called by all processes in every execution
path

13 CMSC714

Does MPI Have Too Many Functions To Remember?

•  Yes (100+ functions), but…
•  Advanced features are not

necessarily used

•  Lesson: try to understand a
few, basic language
features thoroughly

MPI keywords in Conjugate Gradient in C/C++ (15 students)

3
1

10
68

1
2

38
77
72
67

3
14

24
2
2

67
6

2
66

10
53

1
1

4
4

42
8

488
200

125
2

74

1 10 100 1000

MPI_Address
MPI_Aint

MPI_Allgatherv
MPI_Allreduce
MPI_Alltoall
MPI_Alltoallv
MPI_Barrier
MPI_Bcast

MPI_Comm_rank
MPI_Comm_size
MPI_Datatype
MPI_Finalize

MPI_Init
MPI_Irecv
MPI_Isend
MPI_Recv

MPI_Reduce
MPI_Request
MPI_Send

MPI_Sendrecv
MPI_Status

MPI_Type_commit
MPI_Type_struct

MPI_Waitall
MPI_ANY_SOURCE

MPI_ANY_TAG
MPI_CHAR

MPI_COMM_WORLD
MPI_DOUBLE

MPI_INT
MPI_LONG
MPI_SUM

24 functions, 8 constants 14 CMSC714

Pattern: Space Decomposition
•  Incorrect mapping between the problem space and the

program memory space
Symptoms:
•  Segmentation fault (if array index is out of range)
•  Incorrect (maybe slightly incorrect) output
Causes:
•  Mapping in parallel version can be different from that in

serial version
•  E.g., Array origin is different in every processor
•  E.g., Additional memory space for communication can

complicate the mapping logic
Cures & preventions:
•  Validate array origin, whether buffer includes guard buffers,

whether buffer refers to global space or local space, etc. -
these can change while parallelizing the code

•  Encapsulate the mapping logic to a dedicated function
•  Consider designing serial code that is easy to parallelize

15 CMSC714

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
nlocal = N / size;
buffer = (int*)malloc((nlocal+2) * sizeof(int));
nextbuffer = (int*)malloc((nlocal+2) * sizeof(int));

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 0; x < nlocal; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 ...
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

Decompose the problem space

…
buffer[]

0 (nlocal+1)

What are the bugs?
16 CMSC714

MPI_Comm_size(MPI_COMM_WORLD &size);
MPI_Comm_rank(MPI_COMM_WORLD &rank);
nlocal = N / size;
buffer = (int*)malloc((nlocal+2) * sizeof(int));
nextbuffer = (int*)malloc((nlocal+2) * sizeof(int));

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 0; x < nlocal; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 ...
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

What are the defects?

N may not be divisible by size

(x = 1; x < nlocal+1; x++)

•  Loop boundary and array indexes must be changed to reflect the
effect of space decomposition (a sequential implementation
should have been written to make parallelization easier)

•  Lesson: make sure the parallel code works correctly on 1 proc

x-1 x+1

17 CMSC714

Pattern: Hidden Serialization
•  Side-effect of parallelization: ordinary serial constructs can

cause defects when they are used in parallel contexts
•  E.g. I/O hotspots
•  E.g. Hidden serialization in library functions

Symptoms:
•  Various correctness/performance problems
Causes:
•  “Sequential part” tends to be overlooked

•  Typical parallel programs contain only a few parallel
primitives, and the rest of the code is a sequential
program running in parallel

Cures & preventions:
•  Don’t just focus on the parallel code
•  Check that the serial code is working on one processor, but

remember that the defect may surface only in a parallel
context

18 CMSC714

/* Initialize cells with input file */
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
nskip = ...
for (x = 0; x < nskip; x++) { fscanf(fp, "%d", &dummy);}
for (x = 0; x < nlocal; x++) { fscanf(fp, "%d", &buffer[x+1]);}
fclose(fp);

/* Main loop */
...

Data I/O

•  What are the defects?

19 CMSC714

/* Initialize cells with input file */
if (rank == 0) {
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
for (x = 0; x < nlocal; x++) { fscanf(fp, "%d", &buffer[x+1]);}
for (p = 1; p < P; p++) {
 /* Read initial data for process p and send it */
}
fclose(fp);
}
else {
 /* Receive initial data*/
}

Data I/O

•  Lesson: filesystem may cause performance
bottleneck if all processors access the same file
simultaneously
•  Schedule I/O carefully, let “master” processor do

all I/O, or use parallel I/O 20 CMSC714

/* What if we initialize cells with random values... */
srand(time(NULL));
for (x = 0; x < nlocal; x++) {
 buffer[x+1] = rand() % 10;
}

/* Main loop */
...

Generating Initial Data

•  What are the defects?

•  Other than the fact that rand() is not a good pseudo-
random number generator in the first place …

21 CMSC714

/* What if we initialize cells with random values... */
srand(time(NULL));
for (x = 0; x < nlocal; x++) {
 buffer[x+1] = rand() % 10;
}

/* Main loop */
...

What are the Defects?

•  Lesson: all processors might use the same pseudo-
random sequence, breaking independence
assumption (correctness)

•  Lesson: Hidden serialization in the library function
rand() causes performance bottleneck

srand(time(NULL) + rank);

22 CMSC714

Pattern: Synchronization
•  Improper coordination between processes

•  Well-known defect type in parallel programming
•  Some defects can be very subtle

Symptoms:
•  Deadlocks: some execution path can lead to cyclic

dependencies among processes and nothing ever happens
•  Race conditions: incorrect/non-deterministic output and there

can be performance defects due to synchronization too
Causes:
•  Use of asynchronous (non-blocking) communication can lead to

more synchronization defects
•  Too much synchronization can be a performance problem
Cures & preventions:
•  Make sure that all communications are correctly coordinated

•  Check the communication pattern with specific number of
processes/threads using diagrams

23 CMSC714

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 1; x < nlocal+1; x++) {
 nextbuffer[x] = (buffer[x-1]+buffer[x+1]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 MPI_Recv (&nextbuffer[0], 1, MPI_INT, (rank+P-1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Send (&nextbuffer[nlocal],1,MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[nlocal+1],1,MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Send (&nextbuffer[1], 1, MPI_INT, (rank+P-1)%P,
 tag, MPI_COMM_WORLD);
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

Communication

•  What are the defects?

24 CMSC714

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 1; x < nlocal+1; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 MPI_Recv (&nextbuffer[0],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Send (&nextbuffer[nlocal], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[nlocal+1], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Send (&nextbuffer[1],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD);
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

What are the Defects?

•  Obvious example of deadlock
(can’t avoid noticing this)

…

…

…

0 (nlocal+1)

25 CMSC714

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 1; x < nlocal+1; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 MPI_Ssend (&nextbuffer[1],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[nlocal+1], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Ssend (&nextbuffer[nlocal], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[0],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &status);
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

Another Example

•  What are the defects?

26 CMSC714

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 1; x < nlocal+1; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 MPI_Ssend (&nextbuffer[1],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[nlocal+1], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Ssend (&nextbuffer[nlocal], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[0],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &status);
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

What are the Defects?

•  This causes deadlock too
•  MPI_Ssend is a synchronous send (see the next slides.)

27 CMSC714

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 1; x < nlocal+1; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 MPI_Send (&nextbuffer[1],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[nlocal+1], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Send (&nextbuffer[nlocal], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[0],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &status);
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

Yet Another Example

•  What are the defects?

28 CMSC714

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 1; x < nlocal+1; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 MPI_Send (&nextbuffer[1],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[nlocal+1], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Send (&nextbuffer[nlocal], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[0],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &status);
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

Potential Deadlock

•  This may work (many novice programmers write this code)
•  but it can cause deadlock with some MPI implementations,

runtime environments and/or execution parameters

29 CMSC714

Modes of MPI blocking communication
•  http://www.mpi-forum.org/docs/mpi-11-html/node40.html

–  Standard (MPI_Send): may either return immediately when the outgoing
message is buffered in the MPI buffers, or block until a matching receive
has been posted.

–  Buffered (MPI_Bsend): a send operation is completed when MPI buffers
the outgoing message. An error is returned when there is insufficient buffer
space

–  Synchronous (MPI_Ssend): a send operation is complete only when the
matching receive operation has started to receive the message.

–  Ready (MPI_Rsend): a send can be started only after the matching
receive has been posted.

•  In our code MPI_Send probably won’t block in most implementations
(each message is just one integer), but it should still be avoided for
correctness

•  A “correct” solution for this defect could be:
–  (1) alternate the order of send and recv
–  (2) use MPI_Bsend with sufficient buffer size
–  (3) use MPI_Sendrecv, or
–  (4) use MPI_Isend and MPI_Irecv

30 CMSC714

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 1; x < nlocal+1; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 if (rank % 2 == 0) { /* even ranks send first */
 MPI_Send (..., (rank+P-1)%P, ...);
 MPI_Recv (..., (rank+1)%P, ...);
 MPI_Send (..., (rank+1)%P, ...);
 MPI_Recv (..., (rank+P-1)%P, ...);
 } else { /* odd ranks recv first */
 MPI_Recv (..., (rank+1)%P, ...);
 MPI_Send (..., (rank+P-1)%P, ...);
 MPI_Recv (..., (rank+P-1)%P, ...);
 MPI_Send (... , (rank+1)%P, ...);
 }
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

An Example Fix

31 CMSC714

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 1; x < nlocal+1; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 MPI_Isend (&nextbuffer[1],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &request1);
 MPI_Irecv (&nextbuffer[nlocal+1], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &request2);
 MPI_Isend (&nextbuffer[nlocal], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &request3);
 MPI_Irecv (&nextbuffer[0],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &request4);
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

Non-Blocking Communication

•  What are the defects?

32 CMSC714

/* Main loop */
for (n = 0; n < steps; n++) {
 for (x = 1; x < nlocal+1; x++) {
 nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;
 }
 /* Exchange boundary cells with neighbors */
 MPI_Isend (&nextbuffer[1],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &request1);
 MPI_Irecv (&nextbuffer[nlocal+1], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &request2);
 MPI_Isend (&nextbuffer[nlocal], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &request3);
 MPI_Irecv (&nextbuffer[0],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &request4);
 tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

What are the Defects?

•  Synchronization (e.g. MPI_Wait, MPI_Test) is needed at each
iteration (but too much synchronization can cause a performance
problem)

33 CMSC714

Pattern: Performance defect
•  Scalability problem because processors are not working in

parallel
•  The program output itself is correct
•  Perfect parallelization is often difficult: need to decide if

the execution speed is not acceptable
Symptoms:
•  Sub-linear scalability
•  Performance much less than expected (e.g, most time spent

waiting),
Causes:
•  Unbalanced amount of computation per processor
•  Load balancing may depend on input data

Cures & preventions:
•  Make sure all processors are “working” in parallel
•  Profiling tool might help

34 CMSC714

if (rank != 0) {
 MPI_Ssend (&nextbuffer[nlocal],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[0], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &status);
}
if (rank != size-1) {
 MPI_Recv (&nextbuffer[nlocal+1],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Ssend (&nextbuffer[1], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD);
}

Scheduling communication

•  Complicated communication pattern - does not cause deadlock

What are the defects?

35 CMSC714

if (rank != 0) {
 MPI_Ssend (&nextbuffer[nlocal],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD);
 MPI_Recv (&nextbuffer[0], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD, &status);
}
if (rank != size-1) {
 MPI_Recv (&nextbuffer[nlocal+1],1,MPI_INT,(rank+P-1)%P,
 tag, MPI_COMM_WORLD, &status);
 MPI_Ssend (&nextbuffer[1], 1, MPI_INT, (rank+1)%P,
 tag, MPI_COMM_WORLD);
}

What are the bugs?

1 Send → 0 Recv → 0 Send → 1 Recv
2 Send → 1 Recv → 1 Send → 2 Recv
3 Send → 2 Recv → 2 Send → 3 Recv

…

…

…

0 (nlocal+1)

•  Serialization in communication : requires O(size) time (a “correct” solution
takes O(1))

36 CMSC714

Discussion
•  What are good and bad things about using

MPI?

•  What can be done to help prevent these
defect patterns?

–  If MPI and the source language (C, Fortran) are
fixed?

–  If these can be changed?

