
CMSC 714
Lecture 7

PETSc and Cactus

Alan Sussman

2 CMSC 714 - Alan Sussman

Notes

●  MPI project due Wed.

●  OpenMP project will be posted soon after MPI project
due

3 CMSC 714 - Alan Sussman

PETSc
●  Portable, Extensible Toolkit for Scientific Computation
●  Library to encapsulate commonly used functions and

data structures for numerically solving partial
differential equations

●  Targeted at message passing for scalability, but
hides it (mostly) from application

●  Uses object-oriented programming techniques
–  Data encapsulation
–  Polymorphism
–  Inheritance
–  but implemented in C, so no compiler support

●  Essentially SPMD style programming, but w/o explicit
message passing

4

6 guiding principles

●  For performance
–  overlap communication and computation
–  determine details of repeated communication patterns, and

optimize message passing across multiple calls (inspector/
executor model)

–  allow user to decide when communication occurs (if needed)
–  allow user to aggregate data for later communication

●  For ease of use
–  allow user to work on distributed objects (arrays) without

knowing which processor owns which data elements
–  manage communication at higher levels, on objects, instead

of directly using message passing

CMSC 714 - Alan Sussman

5

Distributed Objects

●  Low level data structures
–  Vectors
–  Matrices
–  Index Sets

●  Low level algorithms
–  Create and assemble a vector or matrix – vector scatter/

gather, sparse matrix examples in paper

●  Higher level algorithms
–  PDE solvers
–  Linear and non-linear equation solvers
–  Time steppers
–  Preconditioners

●  All functions take an MPI_Comm as an argument
CMSC 714 - Alan Sussman 6

Six Guiding Principles (again)

●  Managing communication within higher level data
structures and algorithms
–  MPI calls generated to perform communication needed to

perform higher level ops on distributed objects
–  Implication is no optimizations across calls

●  Overlap communication and computation
–  Separate start and end of complex operations, so other

computations can go on in between, like MPI non-blocking
operations

●  Precomputing communication patterns
–  Generate a pattern of sends/receives for an operation on a

distributed object (which may need communication), then
reuse the pattern for subsequent data movement operations

–  Often called inspector/executor model
CMSC 714 - Alan Sussman

7

Guiding Principles (cont.)

●  Programmer management of communication
–  User can explicitly start and end communication via specific

PETSc calls
–  Often to enable overlap of communication with computation

●  Work on distributed objects, not on individual data
elements
–  Avoids programmer having to move data between

application data structures and library data structures
–  Can build PETSc data structures from any process, with

data for any process (not just local to a process)
•  This is what is meant by “assembly”

●  Aggregate data for communication
–  To minimize number of messages
–  Communication cost proportional to number of messages,

plus per byte cost
CMSC 714 - Alan Sussman 8

Cactus

●  Application framework, mainly targeted at
astrophysics and relativity apps
–  And other multidisciplinary apps

●  Hides data distribution and other performance related
programming issues from application logic
–  Data distribution, message passing, parallel I/O, scheduling,

etc.
●  Also targets computational Grids

–  Distributed sets of HPC resources
●  Based on earlier frameworks

–  DAGH, GrACE for parallelizing solution of complex sets of
differential equations (Einstein’s equations for relativity)

●  Core is called the “flesh”, user-defined modules are
called “thorns”

CMSC 714 - Alan Sussman

9

Design criteria

●  Run on a wide variety of machines
–  From desktop to large scale parallel
–  So need a flexible, modular build system – need to auto-detect system

properties to minimize user configuration – based on
autoconf/automake

●  Should be easy to add new modules
–  Need separate name spaces for data for each module (thorn) so they

can co-exist
–  Functionally equivalent modules should be interchangeable

●  Transparent support for parallelism
–  Abstractions for distributed arrays, data parallelism, data

decomposition, synchronization, etc.
–  And should be architecture independent

●  Input and output modules also thorns, so can be used by other
thorns transparently
–  Including parallel I/O, support for different file formats

●  Support legacy code by making them easy to wrap as thorns

CMSC 714 - Alan Sussman 10

Cactus program structure

●  Flesh – the core
–  Provides main program to parse parameters and call thorns
–  Mostly a means to move things around in memory

●  Thorn
–  Contains all user code
–  Communicates with other thorns via calls to flesh API, and

sometimes calls to custom APIs of other thorns
–  Can be written in C, C++, or Fortran (77 or 90)

●  Connections from thorn to flesh (or other thorns)
through configuration file that is parsed at compile
time
–  Glue code generated to encapsulate thorn

●  Configuration is a build of flesh and set of thorns for
a given architecture with config options

CMSC 714 - Alan Sussman

11

More on thorns

●  Grid variables – externally visible to flesh and other
thorns, so are related to overall computation
–  Grid Scalars – single numbers (per process)
–  Grid Functions – distributed arrays with size set by overall

problem size (the grid size for the discretized equations)
–  Grid Arrays – distributed arrays of any size

●  Thorn provides specification files written in CCL
(Cactus Configuration Language)
–  Say what functions the thorn implements (and their

interfaces)
–  Variables (data) that need to be supplied (from other thorns,

via the flesh)
–  Parameters thorn uses
–  What routines must be called (and in what order)

CMSC 714 - Alan Sussman 12

Scheduling thorns

●  Thorn routines can be scheduled to run via a rule
specification
–  A routine can be scheduled before or after other routines

from the same or other thorns
–  And while some condition is true

•  e.g., an overall computation termination condition

●  Routines registered with scheduler, and the overall
set of specs generates a DAG, which can then be
executed multiple times (in topologically sorted order)
–  Scheduler either part of flesh, or a separate thorn (not clear

from paper)

CMSC 714 - Alan Sussman

13

Driver thorns
●  Responsible for memory management for grid variables, and for

parallel operations
–  As asked by the scheduler
–  So can distribute arrays for parallel execution (typically message

passing SPMD style, but could be shared memory too)
●  Three parallelization/synchronization operations

–  Ghost-zone updates between sub-domains (across boundaries of a
distributed array)

–  Generalized reductions (combine values contributed by different
processes)

–  Generalized interpolation (to perform more complex transformations on
data at grid coordinates)

●  Thorn routines can request synchronization of grid variables on
exit

●  Four known driver thorns
–  One grid, non-parallel (SimpleDriver)
–  One grid, parallel (PUGH) – seems to be the one most used
–  Parallel, fixed mesh refinement (Carpet) - multigrid
–  Parallel, adaptive mesh refinement (PAGH)

CMSC 714 - Alan Sussman

