CMSC 714
Lecture 7
PETSc and Cactus

Alan Sussman

Notes
e MPI project due Wed.

® OpenMP project will be posted soon after MPI project
due

CMSC 714 - Alan Sussman

PETSc

Portable, Extensible Toolkit for Scientific Computation
Library to encapsulate commonly used functions and
data structures for numerically solving partial
differential equations
Targeted at message passing for scalability, but
hides it (mostly) from application

Uses object-oriented programming techniques

— Data encapsulation

— Polymorphism

— Inheritance

— but implemented in C, so no compiler support

Essentially SPMD style programming, but w/o explicit
message passing

CMSC 714 - Alan Sussman

6 guiding principles

® For performance
— overlap communication and computation

— determine details of repeated communication patterns, and
optimize message passing across multiple calls (inspector/
executor model)

— allow user to decide when communication occurs (if needed)
— allow user to aggregate data for later communication

® For ease of use

— allow user to work on distributed objects (arrays) without
knowing which processor owns which data elements

— manage communication at higher levels, on objects, instead
of directly using message passing

CMSC 714 - Alan Sussman




Distributed Objects

Low level data structures
— Vectors

— Matrices

— Index Sets

Low level algorithms

— Create and assemble a vector or matrix — vector scatter/
gather, sparse matrix examples in paper

Higher level algorithms

PDE solvers

Linear and non-linear equation solvers

Time steppers

Preconditioners

All functions take an MPI_Comm as an argument

CMSC 714 - Alan Sussman

Six Guiding Principles (again)

Managing communication within higher level data
structures and algorithms

— MPI calls generated to perform communication needed to
perform higher level ops on distributed objects

— Implication is no optimizations across calls

Overlap communication and computation

— Separate start and end of complex operations, so other
computations can go on in between, like MPI non-blocking
operations

Precomputing communication patterns

— Generate a pattern of sends/receives for an operation on a
distributed object (which may need communication), then
reuse the pattern for subsequent data movement operations

— Often called inspector/executor model
CMSC 714 - Alan Sussman

Guiding Principles (cont.)

Programmer management of communication

— User can explicitly start and end communication via specific
PETSc calls

— Often to enable overlap of communication with computation

Work on distributed objects, not on individual data
elements

— Avoids programmer having to move data between
application data structures and library data structures

— Can build PETSc data structures from any process, with
data for any process (not just local to a process)

* This is what is meant by “assembly”
Aggregate data for communication
— To minimize number of messages

— Communication cost proportional to number of messages,
plus per byte cost

CMSC 714 - Alan Sussman

Cactus

Application framework, mainly targeted at
astrophysics and relativity apps

— And other multidisciplinary apps

Hides data distribution and other performance related
programming issues from application logic

— Data distribution, message passing, parallel I/O, scheduling,
etc.

Also targets computational Grids
— Distributed sets of HPC resources
Based on earlier frameworks

— DAGH, GrACE for parallelizing solution of complex sets of
differential equations (Einstein’s equations for relativity)

Core is called the “flesh”, user-defined modules are
called “thorns”

CMSC 714 - Alan Sussman




Design criteria

® Run on a wide variety of machines
— From desktop to large scale parallel
— So need a flexible, modular build system — need to auto-detect system
properties to minimize user configuration — based on
autoconf/automake
@ Should be easy to add new modules

— Need separate name spaces for data for each module (thorn) so they
can co-exist

— Functionally equivalent modules should be interchangeable
Transparent support for parallelism

— Abstractions for distributed arrays, data parallelism, data
decomposition, synchronization, etc.

— And should be architecture independent
Input and output modules also thorns, so can be used by other
thorns transparently

— Including parallel I/O, support for different file formats
Support legacy code by making them easy to wrap as thorns

CMSC 714 - Alan Sussman 9

Cactus program structure

Flesh — the core

— Provides main program to parse parameters and call thorns
— Mostly a means to move things around in memory
Thorn

— Contains all user code

— Communicates with other thorns via calls to flesh API, and
sometimes calls to custom APlIs of other thorns

— Can be written in C, C++, or Fortran (77 or 90)
Connections from thorn to flesh (or other thorns)
through configuration file that is parsed at compile
time

— Glue code generated to encapsulate thorn
Configuration is a build of flesh and set of thorns for
a given architecture with config options

CMSC 714 - Alan Sussman 10

More on thorns

@ Grid variables — externally visible to flesh and other
thorns, so are related to overall computation
— Grid Scalars — single numbers (per process)

— Grid Functions — distributed arrays with size set by overall
problem size (the grid size for the discretized equations)

— Grid Arrays — distributed arrays of any size
@ Thorn provides specification files written in CCL
(Cactus Configuration Language)

Say what functions the thorn implements (and their
interfaces)

Variables (data) that need to be supplied (from other thorns,
via the flesh)

Parameters thorn uses
What routines must be called (and in what order)

CMSC 714 - Alan Sussman 1

Scheduling thorns

Thorn routines can be scheduled to run via a rule
specification
— A routine can be scheduled before or after other routines

from the same or other thorns
— And while some condition is true

* e.g., an overall computation termination condition

Routines registered with scheduler, and the overall
set of specs generates a DAG, which can then be
executed multiple times (in topologically sorted order)

— Scheduler either part of flesh, or a separate thorn (not clear
from paper)

CMSC 714 - Alan Sussman 12




Driver thorns

Responsible for memory management for grid variables, and for
parallel operations
— As asked by the scheduler
— So can distribute arrays for parallel execution (typically message
passing SPMD style, but could be shared memory too)
Three parallelization/synchronization operations

— Ghost-zone updates between sub-domains (across boundaries of a
distributed array)

— Generalized reductions (combine values contributed by different
processes)

— Generalized interpolation (to perform more complex transformations on
data at grid coordinates)

Thorn routines can request synchronization of grid variables on
exit

Four known driver thorns

— One grid, non-parallel (SimpleDriver)

— One grid, parallel (PUGH) — seems to be the one most used

— Parallel, fixed mesh refinement (Carpet) - multigrid

— Parallel, adaptive mesh refinement (PAGH)

CMSC 714 - Alan Sussman

13




